A New Algorithm for Multiphase-Fluid Characterization for Solvent Injection

Author:

Kumar Ashutosh1,Okuno Ryosuke2

Affiliation:

1. University of Alberta

2. University of Texas at Austin

Abstract

Summary Compositional simulation of solvent injection requires reliable characterization of reservoir fluids by use of an equation of state (EOS). Under the uncertainty associated with nonidentifiable components, reservoir fluids are conventionally characterized in the absence of universal methodology. This is true even for relatively simple fluids involving only the gaseous (V) and oleic (L1) phases. No systematic method has been presented for characterization of more-complex fluids, exhibiting three hydrocarbon phases: the V, L1, and solvent-rich-liquid (L2) phases. This paper presents a new algorithm for systematic characterization of multiphase behavior for solvent-injection simulation. The reliability of the method comes mainly from the binary-interaction parameters (BIPs) newly developed for the Peng-Robinson (PR) (Peng and Robinson 1976, 1978) EOS to represent three-phase behavior, including upper critical endpoints, for n-alkane and carbon dioxide (CO2)/n-alkane binaries. The regression part in fluid characterization broadly follows the concept of perturbation from n-alkanes, which was successfully applied for simpler two-phase fluids in our prior research. The algorithm, in its simplest form, uses only the saturation pressure and liquid density at a given composition and reservoir temperature. Case studies are presented to demonstrate the reliability of the algorithm for 90 reservoir fluids and their mixtures with solvents. Predictions are compared with experimental data for up to three phases. Results show that the simple algorithm developed in this research enables the PR-EOS to predict multiphase behavior in spite of the limited data used in the regression. Without the use of the BIPs developed in this research, the PR-EOS may fail to predict three phases, or may provide erroneous three-phase predictions.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3