Optimization of Polymer Flooding in a Heterogeneous Reservoir Considering Geological and History Matching Uncertainties

Author:

Ibiam Emmanuel1,Geiger Sebastian1,Demyanov Vasily1,Arnold Daniel1

Affiliation:

1. Heriot-Watt University

Abstract

Summary Polymer flooding offers the potential to recover more oil from reservoirs but requires significant investments, which necessitate a robust analysis of economic upsides and downsides. Key uncertainties in designing a polymer flood are often reservoir geology and polymer degradation. The objective of this study is to understand the impact of geological uncertainties and history matching techniques on designing the optimal strategy for, and quantifying the economic risks of, polymer flooding in a heterogeneous clastic reservoir. We applied two different history matching techniques (adjoint-based and a stochastic algorithm) to match data from a prolonged waterflood in the Watt Field, a semisynthetic reservoir that contains a wide range of geological and interpretational uncertainties. Next, sensitivity studies were carried out to identify first-order parameters that impact the net present value (NPV). These parameters were then deployed in an experimental design study using Latin hypercube sampling (LHS) to generate training runs from which a proxy model was created using polynomial regression. A particle swarm optimization (PSO) algorithm was employed to optimize the NPV for the polymer flood. The same approach was used to optimize a standard waterflood for comparison. Optimizations of the polymer flood and waterflood were performed for the history-matched model ensemble and the original ensemble. The optimal strategy to deploy the polymer flood and maximize NPV varies based on the history matching technique. The average NPV and the variance are predicted to be higher in the stochastic history matching compared to the adjoint technique. This difference is due to the ability of the stochastic algorithm to explore the parameter space more broadly, which created situations in which the oil in place is shifted upward, resulting in a higher NPV. Optimizing a history-matched ensemble leads to a narrow range in absolute NPV compared to optimizing the original ensemble. This difference is because the uncertainties associated with polymer degradation are not captured during history matching. The result of cross comparison, in which an optimal polymer design strategy for one ensemble member is deployed to the other ensemble members, predicted a decline in NPV but surprisingly still showed that the overall NPV is higher than for an optimized waterflood, even for suboptimal polymer injection strategies. This observation indicates that a polymer flood could be beneficial compared to a waterflood, even if geological uncertainties are not captured properly.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3