Investigate the Impact of Parent Well Depletion on Fracture Geometry Based on Low-Frequency Distributed Acoustic Sensing in Hydraulic Fracture Test Site – 2
-
Published:2023-01-24
Issue:
Volume:
Page:
-
ISSN:
-
Container-title:Day 3 Thu, February 02, 2023
-
language:
-
Short-container-title:
Author:
Srinivasan Aishwarya1ORCID, Mjehovich Joseph2ORCID, Wu Kan1ORCID, Jin Ge3ORCID, Moridis George1ORCID
Affiliation:
1. Texas A&M University 2. IFDATA LLC 3. Colorado School of Mines
Abstract
Abstract
Low-frequency distributed acoustic sensing (LF-DAS) has recently received much attention for its ability to monitor fracture propagation at offset wells. Hydraulic Fracture Test Site-2 (HFTS-2), a DOE- sponsored field-based research experiment, has acquired LF-DAS datasets during the stimulation of many horizontal wells in the Wolfcamp Formation of the Permian Basin. Over 100 stimulated stages with different completion designs in four horizontal wells were monitored by two horizontal offset wells and one vertical pilot hole with permanent fibers. The parent well depletion affected all four horizontal wells in almost half of their lateral section. Several studies have been done on the acquired comprehensive dataset. In this study, we apply our novel Green's function-based inversion algorithm to calculate the fracture width of each stage and investigate the impact of parent well depletion on fracture geometry. The Green's function-based inversion algorithm (Liu et al., 2021) has been successfully applied to a few stages of field case studies. The Green function matrix was built based on linear elasticity theory (Three- Dimensional Displacement Discontinuity Method) to relate the fracture openings with strain responses measured along the length of the fiber. This novel algorithm only relies on measured strain to solve fracture geometry at the monitoring well. Therefore, it is independent of the physics of the fracture propagation process and can be used to validate hydraulic fracture modeling results. Using our inversion algorithm, we can efficiently and quantitatively interpret LF-DAS data to provide information on fracture geometry and completion efficiency.
We analyze more than 100 stages of the LF-DAS measurements obtained at the fiber wells B3H and B4H during B1H, B2H, and B4H stimulations. We apply our inversion algorithm for four datasets covering the stimulation of the above mentioned three wells. The fracture growth at stages in the parent well depleted zone is biased more towards upper formations and in the east direction. The fracture width at the stages in the parent well depletion zone is reduced compared to fracture widths at stages in the non- depleted zone irrespective of the monitoring well location relative to the treatment wells. This difference in fracture widths will affect the proppant distribution to a great extent, thereby, affecting the effectiveness of the stimulation. We also illustrate the application of the inversion algorithm for stages that have both conventional fracture hits with "heart-shaped" signals as well as fracture reopening signals. Our inversion algorithm gives a reasonable estimate of the fracture width that aligns with the qualitative analysis of microseismic datasets and statistic summary of fracture hit numbers of HFTS-2. We believe that this study provides us with insights into the fracture geometry due to parent well depletion effects quantitatively.
Reference23 articles.
1. Ciezobka, J.
(2021). Overview of Hydraulic Fracturing Test Site 2 in the Permian Delaware Basin (HFTS-2). Proceedings of the 9th Unconventional Resources Technology Conference. Unconventional Resources Technology Conference, Houston, Texas, USA. https://doi.org/10.15530/urtec-2021-5514 2. Gale, J. F. W., Elliott, Rysak, Ginn, C. L., Zhang, N., Myers, R. D., & Laubach, S. E. (2021). Fracture Description of the HFTS-2 Slant Core, Delaware Basin, West Texas. Proceedings of the 9th Unconventional Resources Technology Conference. Unconventional Resources Technology Conference, Houston, Texas, USA. https://doi.org/10.15530/urtec-2021-5175 3. Haffener, J., Haustveit, K., & Ingle, T. (2022). Did We Break New Rock? Utilizing Diagnostics to Differentiate New Fracture Creation vs Old Fracture Reactivation: A Meramec and Wolfcamp Study. Day 2 Wed, February02, 2022, D021S006R002. https://doi.org/10.2118/209123-MS 4. Haustveit, K., Elliott, B., Haffener, J., Ketter, C., O'Brien, J., Almasoodi, M., Moos, S., Klaassen, T., Dahlgren, K., Ingle, T., Roberts, J., Gerding, E., Borell, J., Sharma, S., & Deeg, W. (2020). Monitoring the Pulse of a Well Through Sealed Wellbore Pressure Monitoring, a Breakthrough Diagnostic With a Multi-Basin Case Study. Day 2 Wed, February05, 2020, D021S004R001. https://doi.org/10.2118/199731-MS 5. Hydraulic-fracture geometry characterization using low-frequency DAS signal;Jin;The Leading Edge,2017
|
|