Investigate the Impact of Parent Well Depletion on Fracture Geometry Based on Low-Frequency Distributed Acoustic Sensing in Hydraulic Fracture Test Site – 2

Author:

Srinivasan Aishwarya1ORCID,Mjehovich Joseph2ORCID,Wu Kan1ORCID,Jin Ge3ORCID,Moridis George1ORCID

Affiliation:

1. Texas A&M University

2. IFDATA LLC

3. Colorado School of Mines

Abstract

Abstract Low-frequency distributed acoustic sensing (LF-DAS) has recently received much attention for its ability to monitor fracture propagation at offset wells. Hydraulic Fracture Test Site-2 (HFTS-2), a DOE- sponsored field-based research experiment, has acquired LF-DAS datasets during the stimulation of many horizontal wells in the Wolfcamp Formation of the Permian Basin. Over 100 stimulated stages with different completion designs in four horizontal wells were monitored by two horizontal offset wells and one vertical pilot hole with permanent fibers. The parent well depletion affected all four horizontal wells in almost half of their lateral section. Several studies have been done on the acquired comprehensive dataset. In this study, we apply our novel Green's function-based inversion algorithm to calculate the fracture width of each stage and investigate the impact of parent well depletion on fracture geometry. The Green's function-based inversion algorithm (Liu et al., 2021) has been successfully applied to a few stages of field case studies. The Green function matrix was built based on linear elasticity theory (Three- Dimensional Displacement Discontinuity Method) to relate the fracture openings with strain responses measured along the length of the fiber. This novel algorithm only relies on measured strain to solve fracture geometry at the monitoring well. Therefore, it is independent of the physics of the fracture propagation process and can be used to validate hydraulic fracture modeling results. Using our inversion algorithm, we can efficiently and quantitatively interpret LF-DAS data to provide information on fracture geometry and completion efficiency. We analyze more than 100 stages of the LF-DAS measurements obtained at the fiber wells B3H and B4H during B1H, B2H, and B4H stimulations. We apply our inversion algorithm for four datasets covering the stimulation of the above mentioned three wells. The fracture growth at stages in the parent well depleted zone is biased more towards upper formations and in the east direction. The fracture width at the stages in the parent well depletion zone is reduced compared to fracture widths at stages in the non- depleted zone irrespective of the monitoring well location relative to the treatment wells. This difference in fracture widths will affect the proppant distribution to a great extent, thereby, affecting the effectiveness of the stimulation. We also illustrate the application of the inversion algorithm for stages that have both conventional fracture hits with "heart-shaped" signals as well as fracture reopening signals. Our inversion algorithm gives a reasonable estimate of the fracture width that aligns with the qualitative analysis of microseismic datasets and statistic summary of fracture hit numbers of HFTS-2. We believe that this study provides us with insights into the fracture geometry due to parent well depletion effects quantitatively.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3