Phase Behavior of Heavy-Oil/Propane Mixtures

Author:

Mancilla-Polanco A..1,Johnston K..1,Richardson W. D.1,Schoeggl F. F.1,Zhang Y..1,Yarranton H. W.1,Taylor S. D.2

Affiliation:

1. University of Calgary

2. Schlumberger-Doll Research

Abstract

Summary The phase behavior of heavy-oil/propane mixtures was mapped from temperatures ranging from 20 to 180°C and pressures up to 10 MPa. Both vapor/liquid (VL1) and liquid/liquid (L1L2) regions were observed. Saturation pressures (VL1 boundary) were measured in a Jefri 100-cm3 pressure/volume/temperature (PVT) -cell and blind-cell apparatus. The propane content at which a light propane-rich phase and a heavy bitumen-rich (or pitch) phase formed (L1/L1L2 boundary) was visually determined with a high-pressure microscope (HPM) while titrating propane into the bitumen. High-pressure and high-temperature yield data were measured using a blind-cell apparatus. Here, yield is defined as the mass of the indicated component(s) in the pitch phase divided by the mass of bitumen in the feed. A procedure was developed and used to measure propane-rich-phase and pitch-phase compositions in a PVT cell. Pressure/temperature and pressure/composition phase diagrams were constructed from the saturation-pressure and pitch-phase-onset data. High-pressure micrographs demonstrated that, at lower temperatures and propane contents, the pitch phase appeared as glassy particles, whereas at higher propane contents and temperatures, it appeared as a liquid phase. Ternary diagrams were also constructed to present phase-composition data. The ability of a volume-translated Peng-Robinson cubic equation of state (CEOS) (Peng and Robinson 1976) to match the experimental measurements was explored. Two sets of binary-interaction parameters were tested: temperature-dependent binary-interaction parameters (SvdW) and composition-dependent binary-interaction parameters (CDvdW). Models derived from both types of binary-interaction parameters matched the saturation pressures and the L1L2 boundaries at one pressure but could not match the pressure dependency of the L1L2 boundary or the measured L1L2 phase compositions. The SvdW model could not match the yield data, whereas the CDvdW model matched yields at temperatures up to 90°C.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3