Asphaltene precipitation from heavy oil mixed with binary and ternary solvent blends

Author:

Rivero-Sanchez Javier A.1,Ramos-Pallares Francisco2,Schoeggl Florian F.1,Yarranton Harvey W.1

Affiliation:

1. Department of Chemical and Petroleum Engineering , University of Calgary , 2500 University Dr. NW , Calgary , AB T2N 1N4 , Canada

2. Department of Chemical Engineering , Lakehead University , 955 Oliver Road , Thunder Bay , ON P7J 5E1 , Canada

Abstract

Abstract Models are required to predict the onset and precipitation of asphaltenes from mixtures of heavy oil and solvents for a variety of heavy oil applications. The regular solution approach is well suited for this objective but has not yet been tested on solvent mixtures. To do so, the onset and amount of asphaltene precipitation were measured and modeled for mixtures of heavy oil with solvent blends made up from n-alkanes, cyclohexane, and toluene at temperatures of 21 and 180 °C and pressures of 0.1 and 10 MPa. Temperature dependent binary interaction parameters (BIP) between the cyclohexane/asphaltene and toluene/asphaltene pseudo-component pairs were proposed to match the data. All other BIP were set to zero. The model with BIP determined from asphaltene precipitation in heavy oil and binary solvents predicted asphaltene precipitation from heavy oil and ternary solvent blends, generally to within the experimental error.

Publisher

Walter de Gruyter GmbH

Subject

Modelling and Simulation,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3