Oil Recovery Dynamics of Natural Gas Huff ‘n’ Puff in Unconventional Oil Reservoirs Considering the Effects of Nanopore Confinement and Its Proportion: A Mechanistic Study

Author:

Wei Bing1,Zhong Mengying2,Wang Lele2,Tang Jinyu3,Wang Dianlin2,You Junyu4,Lu Jun5

Affiliation:

1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University (Corresponding author)

2. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University

3. Department of Chemical and Petroleum Engineering, United Arab Emirates University

4. School of Petroleum Engineering, Chongqing University of Science & Technology

5. McDougall School of Petroleum Engineering, The University of Tulsa

Abstract

Summary When reservoir fluids are confined by nanoscale pores, pronounced changes in fluid properties and phase behavior will occur. This is particularly significant for the natural gas huff ‘n’ puff (HNP) process as a means of enhanced oil recovery (EOR) technology in unconventional reservoirs. There have been considerable scientific contributions toward exploring the EOR mechanisms, yet almost none considered the effects of nanopore confinement and its proportion on the oil recovery dynamics. To bridge this gap, we developed an approach to calculate fluid phase equilibrium in nanopores by modifying the Rachford-Rice equation and Peng-Robinson equation of state (PR-EOS), completed by considering the shifts of fluid critical properties and oil/gas capillary pressure. Afterward, the effect of nanopore radius (rp) on the phase behavior between the injected natural gas and oil was thoroughly investigated. Compositional simulation was performed using a rigorously calibrated model based on typical properties of a tight reservoir to investigate the production response of natural gas HNP, including the effects of nanopore confinement and its proportion. We demonstrated that the critical pressure and temperature of fluid components decreased with the reduction in rp, especially for heavy constitunts. The saturation pressure, density, and viscosity of the oil in the presence of natural gas all declined linearly with 1/rp in the confined space. The suppression of fluid saturation pressure was indicative of an extended single-phase oil flow period during production. The cumulative oil production was approximately 12% higher if the confinement effect was considered in simulation. Moreover, the average reservoir pressure declined rapidly resulting from this effect, mainly caused by the intensified in-situ gas/oil interaction in nanopores. The results of this paper supplement earlier findings and may advance our understanding of nanopore confinement during natural gas HNP, which are useful for field-scale application of this technique.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3