Optimization of reaction temperature and Ni–W–Mo catalyst soaking time in oil upgrading: application to kinetic modeling of in-situ upgrading

Author:

Abdi-Khanghah Mahdi,Jafari Arezou,Ahmadi Goodarz,Hemmati-Sarapardeh Abdolhossein

Abstract

AbstractDecreasing the conventional sources of oil reservoirs attracts researchers’ attention to the tertiary recovery of oil reservoirs, such as in-situ catalytic upgrading. In this contribution, the response surface methodology (RSM) approach and multi-objective optimization were utilized to investigate the effect of reaction temperature and catalysts soaking time on the concentration distribution of upgraded oil samples. To this end, 22 sets of experimental oil upgrading over Ni–W–Mo catalyst were utilized for the statistical modeling. Then, optimization based on the minimum reaction temperature, catalysts soaking time, gas, and residue wt.% was performed. Also, correlations for the prediction of concentration of different fractions (residue, vacuum gas oil (VGO), distillate, naphtha, and gases) as a function of independent factors were developed. Statistical results revealed that RSM model is in good agreement with experimental data and high coefficients of determination (R2 = 0.96, 0.945, 0.97, 0.996, 0.89) are the witness for this claim. Finally, based on multi-objective optimization, 378.81 °C and 17.31 h were obtained as the optimum upgrading condition. In this condition, the composition of residue, VGO, distillate, naphtha, and gases are 6.798%, 39.23%, 32.93%, 16.865%, and 2.896%, respectively, and the optimum condition is worthwhile for the pilot and industrial application of catalyst injection during in-situ oil upgrading.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3