A Comprehensive Model of High-Rate Matrix-Acid Stimulation for Long Horizontal Wells in Carbonate Reservoirs: Part II—Wellbore/Reservoir Coupled-Flow Modeling and Field Application

Author:

Furui K..1,Burton R.C.. C.1,Burkhead D.W.. W.1,Abdelmalek N.A.. A.1,Hill A.D.. D.2,Zhu D..2,Nozaki M..2

Affiliation:

1. ConocoPhillips

2. Texas A&M University

Abstract

Summary Successful acid stimulation of long-horizontal-well intervals in carbonate reservoirs requires effective acid distribution along the entire reservoir length. Such treatments also require large volumes of acid and seawater/brine injection at sufficiently high injection rates to drive the acid wormholes deep into the reservoir. Under these flowing conditions, significantly large tubing friction loss is anticipated unless optimal friction reducer performance in the tubing is maintained throughout the pumping operation. Because prediction of wormhole penetration and corresponding skin factor depends on analysis of downhole-injection pressures at the reservoir face, it is crucial to properly account for these hydrostatic and friction changes prior to evaluation of wormhole length and skin factor. In this study, an integrated flow model has been developed to predict the wellbore-pressure profile and wormhole distribution by tracking the movement of the acid in the wellbore and the formation. The wellbore-flow model is based on steady-state, 1D, pressure-based nodal method. The segmented wellbore in the reservoir interval is then coupled with analytical transient reservoir-flow models. The wormhole propagation in the formation is calculated based on the modified Buijse-Glasbergen correlation and upscaling model developed in our earlier work. The resultant wormholing skin factor is calculated by simulating and updating the changing well injectivity along the entire injection interval at every timestep. The model developed in this work is applicable for both fully completed wells (i.e., radial flow) and selectively completed perforation-cluster wells (i.e., spherical flow) typically employed in carbonate reservoirs. Analysis of injection rates and pressures during acid treatment provides engineers with a way to determine the varying injectivity and tubing friction as stimulation proceeds. The model presented here can be used as a forward model for analyzing real-time treatment rate and pressure histories and can also be used to review past treatments to improve future treatment designs. Using actual field-stimulation data, we also discuss key elements to successful stimulation planning and the diagnosis of matrix-acid treatments to achieve effective wormhole coverage for horizontal completions in carbonate formations.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3