Study of Acid Fracturing Strategy with Integrated Modeling in Naturally Fractured Carbonate Reservoirs

Author:

Cao Xusheng12,Ren Jichuan34,Xin Shunyuan12,Guan Chencheng34,Zhao Bing12,Xu Peixuan34

Affiliation:

1. Petroleum Engineering Technology Research Institute, Northwest Oilfield Branch Company—Sinopec, Urumqi 830011, China

2. National Key Laboratory of Fractured Reservoirs Developing and Exploiting, Northwest Oilfield Branch Company—Sinopec, Urumqi 830011, China

3. School of Petroleum Engineering, Southwest Petroleum University, Chengdu 610500, China

4. National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China

Abstract

Natural fractures and wormholes strongly influence the performance of acid fracturing in naturally fractured carbonate reservoirs. This work uses an integrated model to study the effects of treatment parameters in acid fracturing in different reservoir conditions. Hydraulic fracture propagation, wormhole propagation, complex fluid leak-off mediums, and heat transfer are considered in the modeling. The model is validated in several steps by analytical solutions. The simulation results indicated that natural fractures and wormholes critically impact acid fracturing and can change the predicted outcomes dramatically. The high permeability reservoirs with conductive natural fractures or low permeability reservoirs with natural fracture networks showed the highest stimulation potential in applying acid fracturing technology. The optimal acid injection rate depends on natural fracture geometry and reservoir permeability. This study also observed that obtaining a high production index is difficult because natural fractures and wormholes reduce the acid efficiency during acid fracturing. Building an acid-etched fracture system consisting of acid-etched natural fractures and hydraulic fractures may help us better stimulate the naturally fractured carbonate reservoirs. The paper illustrates a better understanding of the effects of the treatment design parameters on productivity. It paves a path for the optimal design of acid fracturing treatment for heterogeneous carbonate reservoirs.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3