An Application of Cemented Resistivity Arrays To Monitor Waterflooding of the Mansfield Sandstone, Indiana, U.S.A.

Author:

Bryant I. D.1,Chen M.-Y.1,Raghuraman B.1,Raw I.2,Delhomme J.-P.3,Chouzenoux C.3,Pohl D.3,Manin Y.3,Rioufol E.3,Oddie G.4,Swager D.5,Smith J.5

Affiliation:

1. Schlumberger-Doll Research

2. Schlumberger Reservoir Completion Center

3. Schlumberger Riboud Product Centre

4. Schlumberger Cambridge Research

5. Team Energy LLC

Abstract

Summary In 1999, an oilfield experiment was initiated to test the application of electrical measurement technologies to permanent reservoir monitoring. The principal objective of the experiment was to demonstrate the feasibility of monitoring water movement between an injection and an observation well. This paper describes the interpretation of the data provided by the resistivity arrays and discusses the data quality and reliability of the measurements. Two wells were drilled into the Mansfield sandstone reservoir in Indiana, U.S.A. The D-8 injector well was located in the center of four development wells. The OB-1 monitoring well was offset 233 ft to the southwest in a location midway between the D-8 injector and the No. 3 production well. The injector was instrumented with a 16-electrode resistivity array that was run on the outside of insulated casing and cemented into the annulus of the well. A similar array was cemented into the annulus of the monitoring well. In March 1999, the D-8 well was perforated and acidized. A surface gauge was used to monitor injection rates and pressures. Initially, injection proceeded at a rate of approximately 20 B/D, increasing to 90 B/D after fracture stimulation. The D-8 array records responses to wellbore operations and injection. It clearly distinguishes the movement of the waterfront in different zones. The OB-1 electrical array clearly indicates early water breakthrough by means of an induced fracture. The data show good signal-to-noise ratio and high reciprocity. The experiment has demonstrated the viability of using permanently installed resistivity arrays to monitor the movement of oil/ water contacts and salinity fronts that are some tens of feet away from the wellbore. Results demonstrate the feasibility of using such arrays to monitor oil/water contact movements remote from injection, monitoring, and production wells.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3