Reservoir monitoring using borehole radars to improve oil recovery: Suggestions from 3D electromagnetic and fluid modeling

Author:

Zhou Feng1ORCID,Miorali Mattia2ORCID,Slob Evert2ORCID,Hu Xiangyun3ORCID

Affiliation:

1. China University of Geosciences (Wuhan), School of Mechanical Engineering and Electronic Information, Wuhan, China; Delft University of Technology, Department of Geoscience and Engineering, Delft, The Netherlands..

2. Delft University of Technology, Department of Geoscience and Engineering, Delft, The Netherlands..

3. China University of Geosciences (Wuhan), Institute of Geophysics and Geomatics, Wuhan, China..

Abstract

The recently developed smart well technology allows for sectionalized production control by means of downhole inflow control valves and monitoring devices. We consider borehole radars as permanently installed downhole sensors to monitor fluid evolution in reservoirs, and it provides the possibility to support a proactive control for smart well production. To investigate the potential of borehole radar on monitoring reservoirs, we establish a 3D numerical model by coupling electromagnetic propagation and multiphase flow modeling in a bottom-water drive reservoir environment. Simulation results indicate that time-lapse downhole radar measurements can capture the evolution of water and oil distributions in the proximity (order of meters) of a production well, and reservoir imaging with an array of downhole radars successfully reconstructs the profile of a flowing water front. With the information of reservoir dynamics, a proactive control procedure with smart well production is conducted. This method observably delays the water breakthrough and extends the water-free recovery period. To assess the potential benefits that borehole radar brings to hydrocarbon recovery, three production strategies are simulated in a thin oil rim reservoir scenario, i.e., a conventional well production, a reactive production, and a combined production supported by borehole radar monitoring. Relative to the reactive strategy, the combined strategy further reduces cumulative water production by 66.89%, 1.75%, and 0.45% whereas it increases cumulative oil production by 4.76%, 0.57%, and 0.31%, in the production periods of 1 year, 5 years, and 10 years, respectively. The quantitative comparisons reflect that the combined production strategy has the capability of accelerating oil production and suppressing water production, especially in the early stage of production. We suggest that borehole radar is a promising reservoir monitoring technology, and it has the potential to improve oil recovery efficiency.

Funder

National Natural Science Foundation of China

China University of Geosciences

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3