Application of Nanofluids for Improving Oil Mobility in Heavy Oil and Extra-Heavy Oil: A Field Test

Author:

Zabala R..1,Franco C. A.2,Cortés F. B.2

Affiliation:

1. Ecopetrol

2. Universidad Nacional de Colombia - Sede Medellín

Abstract

Abstract An important factor during the life of a heavy crude reservoir is the oil mobility. It depends on two factors, oil viscosity and oil relative permeability. Two characteristics of nanoparticles that make them attractive for assisting IOR and EOR processes are their size (1 to 100 nm) and ability to manipulate their behavior. Due to their nano-sized structure, nanomaterials have large tunable specific surface areas that lead to an increase in the proportion of atoms on the surface of the particle, indicating an increasing in surface energy. Nanoparticles are also able to flow through typical reservoir pore spaces with sizes at or below 1 micron without the risk to block the pore space. Nanofluids or "smart fluids" can be designed by tuning nanoparticle properties, and are prepared by adding small concentrations of nanoparticles to a liquid phase in order to enhance or improve some of the fluid properties. However the use of nanoparticles and nanofluids for oil mobility has been poorly studied. Hence, the scope of this work is to present the field evaluation of nanofluids for improving oil mobility and mitigate alteration of wettability in two Colombian heavy oil fields; Castilla and Chichimene. Asphaltenes sorption tests with two different types of nanomaterials were performed for selecting the best nanoparticle for each type of oil. An oil based nanofluid (OBN) containing these nanoparticles was evaluated as viscosity reducer under static conditions. Displacement tests through a porous media in core plugs from Castilla and Chichimene at reservoir conditions were also performed. OBN was evaluated to reduce oil viscosity varying oil temperature and water content. Maximum change in oil viscosity is achieved at 122°F and 2% of nanofluid dosage. The use of the nanofluid increased oil recovery in the core flooding tests, caused by the removal of asphaltenes from the aggregation system, reduction of oil viscosity, and the effective restoration of original core wettability. Two field trials were performed in Castilla (CNA and CNB wells), by forcing 200 bbl and 150 bbl of nanofluid respectively as main treatment within a radius of penetration of ~3 ft. Instantaneous oil rate increases of 270 bopd in CNA and 280 bopd in CNB and BSW reductions of ~11% were observed. In Chichimene also two trials were performed (CHA and CHB), by forcing 86 bbl of and 107 bbl of nanofluid as main treatment within a radius of penetration of ~3 ft. Instantaneous oil rate increases of 310 bopd in CHA and 87 bopd in CHB were achieved not BSW reduction has been observed yet. Interventions were performed few months ago and long term effects are still under evaluation. Results look promising making possible to think extending application of nanofluid in other wells in these fields.

Publisher

SPE

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3