Novel Learnings of Proppant Transport Behavior in Unconventional Hydraulic Fractures

Author:

Singh Amit1,Liu Xinghui2,Wang Jiehao2,Rijken Margaretha C. M.2

Affiliation:

1. Chevron Corporation (Corresponding author)

2. Chevron Corporation

Abstract

Summary Effective proppant placement has been one of the key objectives of hydraulic fracturing. Different proppant and fracture fluid characteristics and placement methodologies have been historically applied based on learnings from standard proppant transport studies with parallel plate slots. The standard test setup represents a simplified planar fracture with constant width and confined height, incorporating only basic flow characteristics, and thus, is inadequate to capture unique phenomena of proppant transport in unconventional reservoirs. In this study, proppant transport laboratory tests were conducted on a large-scale (10×20 ft) tortuous slot flow system. This novel setup incorporates many significant unconventional fracture features, including lateral and vertical tortuosity, variable width, leakoff, fluid dynamics replicating upward fracture growth, and so on. Proppant transport behavior was investigated with multiple parameters such as proppant size, density, and concentration; fracture fluid type and viscosity; pumping sequence; pump rate; and fracture properties (width, leakoff location and rate, fracture tortuosity profile, and flow directions). The detailed parametric and integrated study of test results includes analysis of proppant dune evolution, dune shape, particle-size distribution across dune, propped area, fluid, and proppant collected from leakoff and exit ports. Multiple unique phenomena occurring at tortuous interfaces were observed, including the generation of isolated pockets of proppant pack, restriction of upward movement owing to proppant bridging, and creation of discontinuous and sparsely distributed proppant pillars above the dune. The test results demonstrated a larger proppant dune angle in front of the dune peak during injection and a subsequent falloff of proppant pack with a higher percentage of smaller mesh proppant backfilling the area at and near the inlet (analogous to the wellbore). Self-segregation of proppant in slickwater as per mesh size resulted in higher percentage of smaller mesh (larger size) proppant settled near the injection point, and a higher percentage of larger mesh (smaller size) proppant placed farther in the system. These observations and novel learnings highlight that it is critical to account for tortuous fracture pathway, leakoff effects, and flow directions (both lateral and upward) to better understand proppant transport behaviors in unconventional fractures. A partially proppant-filled fracture area is recognized in unconventional fracture in addition to general classification of propped and unpropped fracture area. Using proppant with large mesh size distribution range or pumping smaller mesh proppant first in slickwater helps achieve dual benefits of higher near-wellbore conductivity and improved far-field transport. This study demonstrates and physically verifies unique proppant transport behaviors in unconventional hydraulic fractures. It also provides novel learnings that will help the industry to optimize hydraulic fracture design through the selection of optimum proppant and fluid properties with enhanced pumping strategies for overall well productivity improvement in an unconventional reservoir.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Reference40 articles.

1. Slickwater Proppant Transport in Hydraulic Fractures: New Experimental Findings and Scalable Correlation;Alotaibi;SPE Prod & Oper,2017

2. Proppant Transport Behavior in Inclined Versus Vertical Hydraulic Fractures: An Experimental Study;Ba Geri,2018

3. A Review on Proppant Transport Modelling;Barboza;J Pet Sci Eng,2021

4. Experimental and Numerical Modeling of Convective Proppant Transport;Barree,2013

5. Theory of Sand Transport in Thin Fluids;Blot,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3