Proppant Transport Behavior in Inclined Versus Vertical Hydraulic Fractures: An Experimental Study

Author:

Ba Geri Mohammed1,Imqam Abdulmohsin1,Dunn-Norman Shari1

Affiliation:

1. Missouri University of Science and Technology

Abstract

Abstract Understanding proppant transport in complex fracture systems plays an essential role in determining propped fracture area, fracture conductivity, and their impact on well productivity and economics. Despite extensive, historical work that has studied proppant transport in vertical fractures, very limited investigation exists regarding proppant transport appraisal in inclined hydraulic fractures. This study provides a better understanding of proppant distribution in inclined hydraulic fractures. Proppant transport is governed by several factors such as varying of slurry velocity, fracture geometry, proppant size, and proppant concentration. The main purpose of this experimental study is to evaluate the proppant settling and transport and to determine fracture propped area as a function of the key proppant transport factors in different inclined fracture geometry. Low viscosity fracture fluid (slickwater) was used with different particle sizes: 20/40, 40/70, 100- mesh ceramic proppant. To mimic slurry transport in hydraulic fracturing treatments, a 2 ft. × 2 ft. fracture slot model was constructed with gap of 0.25 in. representing the fracture width. Orientation of the fracture model can be adjusted from vertical to inclined positions. Four injection points perpendicular to the wellbore were used to simulate injection through multiple perforations, in addition to single point injection scenarios. Equilibrium dune height (EDL) is expressed in three regions (near the wellbore, in the center of the fracture, and at the fracture tip) for created fractures. Variations in EDL as a function of the number of perforations that contributed during proppant transport are compared for both vertical and inclined fractures. Experimental results show that both fracture inclination and number of contributing perforations impact EDL and propped fracture area. Inclination of fractures can have significant impact on proppant transport due to the friction or contact force, which comes from the fracture wall. This friction impacts settling velocity of the proppant and impacts the proppant distribution efficiency inside the fracture. Increasing fracture inclination angle increases fracture propped area. Finally, this work observed that number and perforations and their position play an important role in proppant transport, particularly in inclined fractures.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3