Analysis of the Sources of Uncertainty in Geopressure Estimation While Drilling

Author:

Cayeux E.1,Daireaux B.1,Macpherson J.2,Bolt H.3,Harbidge P.4,Annaiyappa P.5,Carney J.6,Ziadat W.7,Edwards M.8

Affiliation:

1. NORCE Norwegian Research Center, Stavanger, Norway

2. Baker Hughes, Houston, USA

3. Depth Solutions, London, UK

4. Expro, Kuala Lumpur, Malaysia

5. Nabors, Houston, USA

6. NOV, Stavanger, Norway

7. Weatherford, Dhahran, Saudi Arabia

8. Edwards Energy Innovation Consulting, Houston, USA

Abstract

Abstract Geopressure estimation is an important aspect of well planning and execution. However, there are many sources of uncertainty that can affect the accuracy and timing of the prognosis. These uncertainties are associated with data produced by many different disciplines at various times throughout the life of the well. As subject matter experts tend to work in silos these uncertainties are often unshared, and there is no appropriate routine performance of uncertainty propagation across disciplines. This can negatively affect decision making during both the engineering and operational phases of a well. Uncertainty requirements across disciplines are often not formulated into coherent uncertainty management. It is therefore important to understand the possible sources of uncertainty to better quantify the estimation of geopressures and to make smarter decisions. This paper describes the uncertainties associated with each estimate of geopressure, their locations in the multi-discipline silos, and the current relationship between estimates. With this comes the realization of a structure or method for combining the individual uncertainties to provide a clearer idea of geopressure estimation and its inherent uncertainty. For instance, combining wellbore position uncertainty with the stratigraphic earth model uncertainty makes possible the estimation of the spatial probability distribution of particular geopressure related observations. The sources of information for geopressure prognosis are many, spread across disparate systems with various discipline ownership. Even direct and real-time observations of formation fluid influx, borehole collapse or formation fracturing can depend on the precision of downhole pressure measurements and knowledge. Extrapolate measured downhole pressures to positions far removed from the measurement point is often necessary. This requires accurate calculation of hydrostatic and hydrodynamic pressures and the wellbore and vertical depth positions to infer pressure profiles along the borehole. These profiles are a function of the accuracy of characterization of the pressure and temperature behavior of the drilling fluid properties and the well depth. Temperature estimations depend on definition of geothermal gradients and the precision of heat transfer calculations causing a varying degree of accuracy for baseline profiles to base operational decision. It is possible to measure pore pressures in situ, or to estimate them using trend analysis of formation evaluation or drilling logs. Factors influencing the precision of the results include the actual measurement depth value uncertainty, and the impact of wellbore position uncertainty on their correlation with an earth model. Leak-off tests deliver information about geopressure margins, but the interpretation of flow-back measurements creates further uncertainties that propagate across the prognosis. The propagated uncertainties from all these sources can be derived using stochastic simulations, yielding, when combined, a quantitative assessment of geopressures. In addition, Kriging methods can incorporate new geopressure estimations in a geomechanics oriented earth model. The paper provides a list of possible sources of uncertainties and a possible categorization of their origins. It describes the causal links between the sources of uncertainties and their effect on the quality of geopressure prognosis. The purpose is to facilitate the adoption of quantitative uncertainty assessment methods by the well construction community for geopressure estimations.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3