Affiliation:
1. Shell
2. Noble Drilling Services
3. National Oilwell Varco
Abstract
Summary
In 2010, on the basis of the safety-performance results achieved through the automation revolution in its oil and gas downstream business, an operator set out to start the same revolution in its upstream business. Automating the initial well-control response to an influx was identified as the initial focus area with the goal of assisting rig personnel to identify and stop any influx without delay. This led to a well-control automation-collaboration project started between an operator, a rig contractor, and a rig-equipment supplier. The first phase of the project was to develop a system that could detect an influx across a broad spectrum of well-construction-related rig operations. This paper describes the development, deployment, and field testing of the first upgraded kick-detection system from this collaboration.
To understand where to focus the kick-detection system-upgrade efforts, a fault-tree-style sensitivity analysis of kick detection and well shut-in procedures was undertaken. The results pointed to the high value of improved sensor data (both accuracy and reliability) and of improved detection software for alarming (both in terms of coverage and how the driller is alerted to respond to a confirmed kick condition). On the basis of this sensitivity analysis, a kick-detection system-upgrade functional specification was created and used to develop a trial-upgrade plan for a deepwater rig.
Initial implementation operational performance results are presented to demonstrate that most of the kick-detection system-upgrade objectives were achieved.
Operational feedback from using the upgraded kick-detection system is included which highlights the new, “SMART,” features that were designed to provide easily understood alerts to the driller, including unique pop-up kick-alarm windows for drilling or circulating, making a connection, and tripping in or out.
Publisher
Society of Petroleum Engineers (SPE)
Subject
Mechanical Engineering,Energy Engineering and Power Technology
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献