Uncertainty and Sensitivity Analysis of Multi-Phase Flow in Fractured Rocks: A Pore-To-Field Scale Investigation

Author:

He Xupeng1,Zhang Zhen1,AlSinan Marwah2,Li Yiteng1,Kwak Hyung2,Hoteit Hussein1

Affiliation:

1. King Abdullah University of Science and Technology

2. Saudi Aramco

Abstract

Abstract Despite recent advancements in computational methods, it is still challenging to properly model fracture properties, such as relative permeability and hydraulic aperture, at the field scale. The challenge is in determining the most representative fracture properties, concluded from multi-scale data. In this study, we demonstrate how to capture fracture properties at the field scale from core-scale and pore-scale data through multi-scale uncertainty quantification, and assess how pore-scale processes can significantly impact the recovery factor. There are three components within our workflow: 1) performing high-resolution Navier-Stokes (NS) simulation at pore-scale to obtain hydraulic aperture of discrete single fractures, 2) embedding pore-scale parameters into core-scale for predicting field-scale objective, such as recovery factor, and 3) performing Monte Carlo simulations to determine the relationship effect of the pore-scale parameters to the field scale responding. At pore-scale, we start with four parameters that characterize the fractures: mean aperture, relative roughness, tortuosity, and the ratio of minimum to mean apertures. We then construct hydraulic aperture surrogates using an Artificial Neural Network (ANN). At the field scale, we deploy Long Short-Term Memory (LSTM) to capture the recovery factor at field-scale. The final results are the time-varying recovery factor and its sensitivity analysis. Monte Carlo simulation is performed on the final surrogate to produce the recovery factor value for various time-step. The result is beneficial for risk assessment and decision-making during the development of fractured reservoirs. Our method is the first to quantitatively estimate multi-scale parameters’ effect on recovery factors in two-phase flow in fractured media. This method also shows how we accommodate and deal with multi-scale parameters.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3