An Innovative ICD Design Workflow to Balance Flux Equalization and Well Productivity in Horizontal Wells

Author:

Lee Byung1,Faizal Syed Abu2,Galimzyanov Artyom2

Affiliation:

1. Saudi Aramco

2. Baker Hughes

Abstract

Abstract During the last decade, inflow control device (ICD) technology has rapidly developed and widely been used in horizontal wells due to its effectiveness in flux equalization and mitigation of unwanted fluid breakthrough. An ICD completion achieves flux equalization and manages water breakthrough by introducing an extra pressure drop in the ICD and redistributing the drawdown across the sandface between high and low permeable intervals of a horizontal well. This additional pressure loss in the ICD completion will cause reduction of effective productivity of the well, in other words it will require lower flowing bottom-hole pressure for a well with ICD completion to produce the same liquid rate compared to a well with a barefoot completion. The higher the pressure drop across the ICD completion, the better will be the equalization effect and water mitigation. Subsequently, the reservoir pressure has to be used wisely during field development as expensive pressure maintenance programs are utilized in many fields as part of the field development plans. This study tries to answer an important question: What should the optimum pressure regulation in an ICD completion be to realize the benefits of ICD without excessive reduction of well productivity? The effect of ICD regulation on flux equalization and well productivity reduction for various cases of well productivity index (PI) and permeability variation were studied through numerous static near wellbore simulation runs. Dynamic reservoir simulation was conducted to verify the results from the static simulation and dependence of the degree of flux equalization along the horizontal section on water breakthrough deferment and the oil recovery factor. An ICD design workflow is presented, which can be used to select an optimum ICD design, which maximizes the benefits of ICD with the least reduction in well productivity. A trade-off chart between well productivity and the degree of influx equalization has been built, which helps to determine the optimum pressure drop across an ICD completion in the presence of various levels of permeability variation along the wellbore. This approach can provide quick and simple calculation for the required ICD strength or number of ICD joints along the wellbore to maximize recovery of hydrocarbons. A real field case is used to illustrate the effectiveness of this workflow for optimum ICD design.

Publisher

SPE

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3