An integration of the numerical and soft computing approaches for determining inflow control device flow area in water injection wells

Author:

Mostakhdeminhosseini Farshad,Rafiei YousefORCID

Abstract

AbstractTo avoid or mitigate the unwanted water and gas content, inflow control devices (ICDs) are designed and installed in the well to disturb the water and gas breakthrough which are trying to overtake the oil inflow, water and gas coning and sand production. Smart wells with permanent downhole valves such as ICDs are used to balance production and injection in wells. A paramount issue regarding using downhole control devices is determining the required cross-sectional area of them for control of the imposed pressure drop across the device to stabilize the fluid flow. Current methods for calculating the opening size of the ICDs are mainly based on sensitivity analysis of the ICD flow area or optimization algorithms coupled with simulation models. Although these approaches are quite effective in oil field cases, they tend to be time-consuming and require demanding system models. This paper presents a fast analytical method to determine the ICD flow area validated by a genetic algorithm (GA). Analytically, a closed-form expression is introduced by manipulating Darcy’s law applicable to multi-layer injection wells with different layer properties to balance the injection profile in the reservoir pay zone, based on equalizing injected front velocity in layers with different permeability. Considering various scenarios of analytical technique, GA optimization, and sensitivity analysis scenarios for ICD cross-sectional area determination, results for oil recovery, water production, water breakthrough time, and net present value (NPV) are discussed and compared. NPV values obtained by both analytical and GA approaches are virtually identical and greater than those of other scenarios. Compared to the base field case, the analytical method improved the oil recovery by almost 1%, reduced water production by almost 91%, and synchronized the water breakthrough time of high- and low-permeability layers (from a ratio of 1.76–1.06). The proposed analytical solution proved to be capable of providing desirable results with only one reservoir simulation run in contrast to GA and sensitivity analysis scenarios which require iterative simulation runs. The proposed analytical solution outperformed the GA as it is less computationally demanding in addition to its success in case of lowering water production for the field data. The findings of this study can help for a better understanding of the situation where water injection into the oil reservoir is problematic as the layers present different permeabilities which can induce problems such as early water breakthrough from the more permeable layer and hinder the success of the water injection process. Using ICDs and a faster and more accurate approach to calculate its cross-sectional area such as the analytical method that was used in this study can greatly increase the success rate of water injection in case of oil recovery and lower the amount of the produced water.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3