Generating Synthetic Well Logs by Artificial Neural Networks (ANN) Using MISO-ARMAX Model in Cupiagua Field

Author:

Alzate G. A.1,Arbeláez-Londoño Mastan1,Agudelo A. Naranjo1,Romero R. D.2,Bolaños M. A.1,Escalante D. L.1,Quintero S. Gómez1,Peláez C. A.1

Affiliation:

1. Universidad Nacional de Colombia

2. Ecopetrol

Abstract

Abstract Well logs acquired directly in field have turned out to be one of the most key engineering elements to evaluate hydrocarbon formations. Nevertheless, the lack of information, some technical troubles related to the unfolding of tools, the operational states of the well and many other reasons may sharply limit the carrying out of an optimal formation characterization methodology along the entire productive or injective lifespan of a reservoir. Nowadays, artificial neural networks (ANN) are one of the strongest tools to supply such missing information in order to generate synthetic logs. In this paper, we explain the putting into practice of an ANN methodology with the aim of provide useful input information in geomechanical modeling for the hydraulic fracturing simulator GIGAFRAC. More explicitly, the purpose of the schemes presented here is to provide transit-time curves for primary or compressional waves (DtP) and secondary or shear waves (DtS), based on full information measurements of Gamma Ray, Neutron-Porosity, Density, DtP and DtS logs; for some wells in the Cupiagua field located in Colombian Foothills, which break through some geologic formations such as Mirador, Barco, Guadalupe, and Los Cuevos. A noteworthy amount of considerations were taken into account to ensure the success of the ANN estimation phases. A strong focus is done regarding to filtration and quality control of the input information to the network, relating to the control mechanism of outliers, as well as the splitting-up of logs in zones by using a geological criteria and spreading of data information in computationally convenient vectorial and matricial arrangements. Finally, good adjustments were obtained throughout the validation phases and they all were considered as successful outcomes, together with training phase and subsequent use of the same for estimating DtP and DtS curves.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3