Generation of Synthetic Density Log Data Using Deep Learning Algorithm at the Golden Field in Alberta, Canada

Author:

Kim Sungil1ORCID,Kim Kwang Hyun1ORCID,Min Baehyun2ORCID,Lim Jungtek3,Lee Kyungbook1ORCID

Affiliation:

1. Petroleum and Marine Research Division, Korea Institute of Geoscience and Mineral Resources, 124, Gwahak-ro, Yuseong-gu, Daejeon 34132, Republic of Korea

2. Department of Climate and Energy Systems Engineering, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea

3. SmartMind, Inc., 1006, 379, Yeouidaebang-ro, Yeongdeungpo-gu, Seoul 03760, Republic of Korea

Abstract

This study proposes a deep neural network- (DNN-) based prediction model for creating synthetic log. Unlike previous studies, it focuses on building a reliable prediction model based on two criteria: fit-for-purpose of a target field (the Golden field in Alberta) and compliance with domain knowledge. First, in the target field, the density log has advantages over the sonic log for porosity analysis because of the carbonate depositional environment. Considering the correlation between the density and sonic logs, we determine the sonic log as input and the density log as output for the DNN. Although only five wells have a pair of training data in the field (i.e., sonic and density logs), we obtain, based on geological knowledge, 29 additional wells sharing the same depositional setting in the Slave Point Formation. After securing the data, 5 wells among the 29 wells are excluded from dataset during preprocessing procedures (elimination of abnormal data and min–max normalisation) to improve the prediction model. Two cases are designed according to usage of the well information at the target field. Case 1 uses only 23 of the surrounding wells to train the prediction model, and another surrounding well is used for model testing. In Case 1, the Levenberg–Marquardt algorithm shows a fast and reliable performance and the numbers of neurons in the two hidden layers are of 45 and 14, respectively. In Case 2, the 24 surrounding wells and four wells from the target field are used to train the DNN with the optimised parameters from Case 1. The synthetic density logs from Case 2 mitigate an underestimation problem in Case 1 and follow the overall trend of the true density logs. The developed prediction model utilises the sonic log for generating the synthetic density log, and a reliable porosity model will be created by combining the given and the synthetic density logs.

Funder

National Research Foundation of Korea

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3