A Sensitivity Study of Micellar/Polymer Flooding

Author:

Pope G.A.1,Wang Ben1,Tsaur Kerming1

Affiliation:

1. U. of Texas

Abstract

Abstract The compositional simulator of Pope and Nelson has been extended to include a number of additional effects. The efficiency of the oil displacement has been calculated as a function of slug size, polymer drive size, surfactant and oil concentrations in the slug, slug/oil bank and drive/slug mobility ratios, surfactant and polymer absorption, interfacial tension (IFT), phase type, binodal curves, plait point location, capillary desaturation curves for each point location, capillary desaturation curves for each phase, relative permeabilities, waterflood residuals, phase, relative permeabilities, waterflood residuals, dispersion, electrolyte gradient, and amount of surfactant injected. High-concentration slugs in a Type II (+) (or plait point left) phase environment were found to be less dependent on low IFT than low-concentration slugs or slugs in a type II (-) phase environment. For the Type II (-) case, oil phase environment. For the Type II (-) case, oil recovery is not sensitive to plait point location. However, the best oil recovery for a given amount of injected surfactant occurs where a salinity higher than optimal exists downstream of the slug and a salinity lower than optimal exists upstream of the slug (in the polymer drive) and the slug itself traverses as much of the reservoir as possible in the low-tension Type III environment. The low final salinity promotes low final retention of surfactant. For the cases studied, the salinity, surfactant concentration, oil concentration, and polymer concentration of the slug itself then made relatively little difference. Introduction Several authors have examined one-dimensional simulation of surfactant flooding and the various complex compositional effects that occur during the displacement of oil with surfactants and polymers. Nelson and Pope presented laboratory results showing the importance of the Type III phase environment and how oil recovery can result from mechanisms other than low IFT. Actually, several key phenomena affecting oil recovery are strongly coupled and need to be considered simultaneously both to understand and to simulate the process. The simulator of Pope and Nelson was a first attempt to model these effects, which include IFT, phase behavior, fractional flow, adsorption, and polymer properties as a function of electrolyte. Ion exchange properties as a function of electrolyte. Ion exchange has been shown to have an important impact on the process as well, since the electrolyte environment process as well, since the electrolyte environment affects many of the most important fluid properties involved. Pope and Nelson have shown how the displacement of oil is "miscible-like" under certain conditions, even when dispersion and adsorption are considered and small slugs are used. However, to be practical, a very carefully designed electrolyte practical, a very carefully designed electrolyte gradient must exist (or some other equivalent gradient of another variable such as surfactant molecular weight, alcohol, etc.). Here we continue the investigation of these process variables by presenting results of a sensitivity study. Both presenting results of a sensitivity study. Both water and oil-rich surfactant slug cases are simulated. Model Changes Pope and Nelson presented a description of the Pope and Nelson presented a description of the original simulator. Several changes that have been made will be discussed briefly. The IFT functions are now those proposed by Healy and Reed. ....... (1) ....... (2) SPEJ P. 357

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Engineering

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3