A New Approach for Reservoir Characterization

Author:

Aminian K.1,Thomas B.1,Ameri S.1,Bilgesu H.I.1

Affiliation:

1. West Virginia University

Abstract

Abstract To reliably predict the reservoir performance, an accurate model of the reservoir is necessary. For reservoir simulation purposes, the flow unit model is most practical approach. The flow units are defined according to geological and petrophysical properties that influence the flow of fluids in the reservoir. Identification and prediction of flow units are strongly dependent on the availability of permeability distribution. This need for permeability distribution significantly limits the identification of flow units in reservoirs where permeability measurements are not abundant such as most reservoirs in the Appalachian Basin. In this study, statistical and artificial intelligence techniques were employed to identify flow units based on limited data obtained from core analysis supplemented by mini-permeameter measurements, geological interpretations, and well log data in a heterogeneous oil reservoir in the Appalachian Basin. An innovative methodology was then developed to predict flow units using only well log data. The distribution of flow units in the reservoir was then predicted based on abundant well log data. Finally, permeability and porosity distributions were predicted based on the distribution of the flow units in the reservoir. This approach led to development of a reliable reservoir model. The accuracy of model was verified by successful simulation of the production performance. The methodology presented in this paper can serve as a new guideline for the characterization of heterogeneous reservoirs. Introduction The Appalachian Basin has numerous abandoned or marginally productive oilfields. Significant amount of oil remains in these reservoirs however further development of these reservoirs, or similar reservoirs in other basins, is hampered by the lack of sufficient data to evaluate their potential and predict their performance. The key parameter for reservoir characterization is the permeability distribution. In reservoirs where permeability measurements are not abundant, permeability must be predicted from well log data. The goal of this study was to develop a methodology for reservoir characterization with limited permeability data. In order to achieve this goal, an oil reservoir in West Virginia was selected for study. The reservoir was discovered in 1895. Between 1895 and 1901 over 500 wells were drilled in this reservoir. By 1910 most of the wells were plugged and abandoned. In 1981, a pilot waterflood was commenced in the field. Based on the pilot recoveries; development proceeded to a full-scale waterflood. Over 140 new wells were drilled as injectors or producers. Secondary recovery of the field has been in progress since 1987. Core and core analyses were available from 6 wells which were drilled during the waterflood evaluation period. All of the wells drilled for water flooding operations had gamma ray and density logs available. The information available form the core descriptions and core analyses from the six wells were used to define the Flow Units. Statistical and graphical techniques were employed to identify and verify the Flow Units based upon permeability-porosity relationship within each Flow Unit. Our previous investigations (Aminian, et al 2000 and 2001a) have revealed that Artificial Neural Networks (ANNs) to be very useful for predicting permeability using geophysical log data. This study extends this application by developing a methodology to identify Flow Units within the reservoir when permeability is not available. Artificial Neural Networks are then developed and utilized to predict the distribution of flow units, permeability, and porosity using well log data from 125 wells reservoir-wide. The production-injection data were available from several 5-spot patterns. This offered the unique opportunity to verify the reservoir description by history matching with a reservoir simulator.

Publisher

SPE

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Prediction of the Soil Permeability Coefficient of Reservoirs Using a Deep Neural Network Based on a Dendrite Concept;Processes;2023-02-22

2. References;Artificial Intelligence and Data Analytics for Energy Exploration and Production;2022-08-26

3. Reservoir Characterization;Petrophysics;2016

4. Statistical verification of hydraulic units in a heterogeneous reservoir of the Liaohe Oilfield;Journal of Earth Science;2014-12

5. Reservoir Characterization;Petrophysics;2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3