Adsorption and Squeeze Performance of PAMAM-PGLU Inhibitors for Silicate Scale Mitigation Due to ASP Flooding

Author:

Tan Bee Chea1,Mohd Saaid Ismail1,Mahat Siti Qurratu’ Aini2,Zainal Suzalina3,Anuar Astriyana4,Tri Bhaskoro Petrus3

Affiliation:

1. Universiti Teknologi PETRONAS

2. Universiti Malaysia Pahang

3. PETRONAS Research Sdn Bhd

4. Petroliam Nasional Berhad

Abstract

Abstract The dissolution of quartz mineral in sandstone reservoir due to chemical enhanced oil recovery (cEOR) processes, such as alkaline surfactant polymer (ASP) flooding has resulted in the scaling of silica and silicates around the wellbore formation and in the production wells. These scales can block and hinder the flow of producing fluids if left untreated. This will lead to reduced production rates as well as equipment damages eventually. The adsorption and squeeze performance of developed scale inhibitors that made up of polyamidoamine (PAMAM) dendrimers and pteroyl–L–glutamic acid (PGLU) was assessed in this paper. The results were compared to diethylenetriamine penta(methylene phosphonic acid), a commercial phosphonate scale inhibitor known as DETPMP. The crushed Berea sandstone core was soaked in scale inhibitor solutions for static adsorption test. Core flooding was performed to investigate the adsorption and retention of scale inhibitors in sandstone formation. The prediction of scale inhibitor squeeze performance was simulated based on core flooding data obtained. Laboratory results reveal PAMAM–2–PGLU scale inhibitor that comprises second generation PAMAM dendrimer exhibits the highest adsorption and retention in sandstone core. On top of that, the permeability of sandstone core was also increased with the treatment of PAMAM–PGLU scale inhibitors. SQUEEZE IV software also predicted that PAMAM–PGLU scale inhibitors yielded longer squeeze lifetime than DETPMP scale inhibitor. Both experimental and modelling results showed a good fit in terms of adsorption and squeeze lifetime. In this paper, the tested PAMAM–PGLU scale inhibitors demonstrate better adsorption, retention, and squeeze lifetime in sandstone formation. Although commercial scale inhibitors are effective at a wide range of reservoir conditions, the disposal of phosphonate scale inhibitors has raised concern due to their toxicity and low biodegradability. Hence, these developed PAMAM–PGLU scale inhibitors could be offered as environment–friendly and effective alternatives.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3