A Quasi-Newton Method for Well Location Optimization Under Uncertainty

Author:

Eltahan Esmail1,Alpak Faruk Omer2,Sepehrnoori Kamy1

Affiliation:

1. University of Texas at Austin

2. Shell International Exploration and Production Inc

Abstract

AbstractSubsurface development involves well-placement decisions considering the highly uncertain understanding of the reservoir in the subsurface. The simultaneous optimization of a large number of well locations is a challenging problem. Conventional gradient-based methods are known to perform efficiently for well-placement optimization problems when such problems are translated into real-valued representations, and special noisy objective function handling protocols are implemented. However, applying such methods to large-scale problems may still be impractical because the gradients of the objective function may be too expensive to compute for realistic applications in the absence of the implementation of the adjoint method. In this paper, we develop a quasi-Newton method based on the stochastic simplex approximate gradient (StoSAG), which requires only objective-function values.We have implemented the BFGS quasi-Newton updating algorithm together with line-search and trust-region optimization strategies. We have developed a novel approach to enhance the accuracy of StoSAG gradients by modifying their formulations to enable exploiting the objective-function structure. The objective function is treated as a summation of element functions, each representing the contribution from an individual well at distinct time steps. Instead of working with a single value for the gradient, we treat it as a sum of sub-gradients. We then utilize problem-specific prior knowledge to form a matrix W that acts on the sub-gradients. The entries of W vary from 0 to 1 and are proportional to the interference effects the neighbouring wells have on each other. We define those entries (or weights) based on the radii of investigation around the wells. The BFGS-StoSAG variants are demonstrated on a realistic synthetic case with 26 wells while varying the average reservoir permeability.We first show that the BFGS algorithm delivers promising performance as in many cases it results in the most rapid improvement for the objective-function values (especially in early iterations). Further testing results confirm that the trust-region protocol is more effective than the line-search protocol for accelerating convergence with BFGS. Although the objective function is not always continuously differentiable with respect to well locations, the StoSAG variants overcome this challenge owing to their smoothing properties of approximate gradients. Moreover, we show that using our gradient correction procedures on the well-location optimization problem results in drastic acceleration in convergence indicating enhancement in the StoSAG gradient approximation quality.

Publisher

SPE

Reference39 articles.

1. Biobjective Optimization of Well Placement: Algorithm, Validation, and Field Testing;Alpak;SPE Journal,2022

2. Robust optimisation of well placement in geologically complex reservoirs;Alpak;International Journal of Petroleum Engineering,2016

3. AlQahtani, G., Vadapalli, R., Siddiqui, S. and Bhattacharya, S. [2012] Well Optimization Strategies in Conventional Reservoirs. SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition. SPE-160861-MS. Al-Khobar, Saudi Arabia.

4. Minimization of functions having Lipschitz continuous first partial derivatives;Armijo;Pacific Journal of Mathematics,1966

5. Generalized field-development optimization with well-control zonation;Awotunde;Computational Geosciences,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3