Biobjective Optimization of Well Placement: Algorithm, Validation, and Field Testing (includes associated errata)

Author:

Alpak Faruk1,Jain Vivek2,Wang Yixuan3,Gao Guohua4

Affiliation:

1. Shell International Exploration and Production Inc.

2. Shell India Markets Pvt. Ltd.

3. Shell Exploration and Production Company Inc.

4. Shell Global Solutions Inc.

Abstract

Summary We describe the development and validation of a novel algorithm for field-development optimization problems and document field-testing results. Our algorithm is founded on recent developments in bound-constrained multiobjective optimization of nonsmooth functions for problems in which the structure of the objective functions either cannot be exploited or are nonexistent. Such situations typically arise when the functions are computed as the result of numerical modeling, such as reservoir-flow simulation within the context of field-development planning and reservoir management. We propose an efficient implementation of a novel parallel algorithm, namely BiMADS++, for the biobjective optimization problem. Biobjective optimization is a special case of multiobjective optimization with the property that Pareto points may be ordered, which is extensively exploited by the BiMADS++ algorithm. The optimization algorithm generates an approximation of the Pareto front by solving a series of single-objective formulations of the biobjective optimization problem. These single-objective problems are solved using a new and more efficient implementation of the mesh adaptive direct search (MADS) algorithm, developed for nonsmooth optimization problems that arise within reservoir-simulation-based optimization workflows. The MADS algorithm is extensively benchmarked against alternative single-objective optimization techniques before the BiMADS++ implementation. Both the MADS optimization engine and the master BiMADS++ algorithm are implemented from the ground up by resorting to a distributed parallel computing paradigm using message passing interface (MPI) for efficiency in industrial-scaleproblems. BiMADS++ is validated and field tested on well-location optimization (WLO) problems. We first validate and benchmark the accuracy and computational performance of the MADS implementation against a number of alternative parallel optimizers [e.g., particle-swarm optimization (PSO), genetic algorithm (GA), and simultaneous perturbation and multivariate interpolation (SPMI)] within the context of single-objective optimization. We also validate the BiMADS++ implementation using a challenging analytical problem that gives rise to a discontinuous Pareto front. We then present BiMADS++ WLO applications on two simple, intuitive, and yet realistic problems, and a model for a real problem with known Pareto front. Finally, we discuss the results of the field-testing work on three real-field deepwater models. The BiMADS++ implementation enables the user to identify various compromise solutions of the WLO problem with a single optimization run without resorting to ad hoc adjustments of penalty weights in the objective function. Elimination of this “trial-and-error” procedure and distributed parallel implementation renders BiMADS++ easy to use and significantly more efficient in terms of computational speed needed to determine alternative compromise solutions of a given WLO problem at hand. In a field-testing example, BiMADS++ delivered a workflow speedup of greater than fourfold with a single biobjective optimization run over the weighted-sumsobjective-function approach, which requires multiple single-objective-function optimization runs.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3