Effect of Surfactant Partitioning on Mobility Control During CO2 Flooding

Author:

Ren Guangwei1,Zhang Hang1,Nguyen Quoc P.1

Affiliation:

1. University of Texas at Austin

Abstract

Summary This paper presents a systematic study of the effect of surfactant partitioning between supercritical carbon dioxide (SCCO2) and water on surfactant transport and foam propagation during a two-phase flow. A series of corefloods was conducted on Silurian dolomite cores with different nonionic and anionic surfactants that represent respective wide ranges of partition coefficients and solubility in SCCO2. Foam robustness (i.e., rate of foam development) and displacement efficiency were related to these surfactant properties. Coreflood results and all measured surfactant properties were used in a commercial reservoir simulator to determine the variation of the surfactant-partitioning effect from laboratory to field scale. The optimization of the surfactant-partition coefficient for field-scale foam process was performed with different injection strategies. The results from this study enable us to tailor the properties of CO2-soluble surfactants (i.e., partition coefficients) to a wide range of reservoir conditions and optimal injection strategies. The understanding of the surfactant-partitioning effect is also important in overcoming technical challenges encountered in the injection of surfactant in CO2. The partition between CO2 and water phases was much more sensitive to surfactant structure than temperature and pressure. Strong foam development was observed for all nonionic and anionic surfactants, whereas an increase in surfactant-partition coefficient lowered the rate of foam propagation. Field-scale foam simulations indicate that foam performance and surfactant transport are governed not only by constrained injection strategies, but also by a surfactant-partition coefficient. This novel CO2-soluble-surfactant concept diversifies injection strategies with respect to operational constraints, thus broadening the application of foam process. For a given injection strategy, a surfactant-partition coefficient could be optimized to improve injectivity and sweep efficiency. The optimal partition of the surfactant between the CO2 and aqueous phases minimizes the wasting of expensive surfactant in water that never comes in contact with CO2.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3