Improved Drilling Efficiency Technique Using Integrated PDM and PDC Bit Parameters

Author:

Motahhari H.R.1,Hareland G.1,James J.A.2

Affiliation:

1. University of Calgary

2. Saudi Aramco

Abstract

Summary In this paper, a new drilling optimization procedure is presented that is designed to improve the drilling efficiency with positive displacement motors (PDMs) and PDC bits. This developed optimization method is based on predicting rate of penetration (ROP) from PDM outputs for any PDC bit design. More specifically, optimization is done for a hole section and optimum values of weight on bit (WOB) and surface RPM are obtained for the section. For given flow rates, estimated values of optimum WOB and surface RPM are used to calculate the corresponding motor differential pressures and the foot by foot ROP values. Also, the method is used to show how improper operational parameter selection can affect total drilling time. A case study was done to consider different PDMs with different lobe configurations and a set of fixed operational parameters. The presented method is verified by generating a confined rock strength log based on drilling data for a previously drilled well in Alberta. This foot-by-foot strength log is compared to a confined rock strength log generated as a follow-up analysis by a commercially available drilling simulator package. Also, a PDM differential pressure log is generated and compared to field-recorded on-bottom differential pressure values. The method's application is best demonstrated by simulating the drilling operation of the Alberta well with three different PDMs. It is shown that consideration of PDM performance/selection in the drilling planning phase will help to perform a safe and cost-effective operation by preventing motor stalls and maintaining highest average ROP for the section. It is also shown that by optimizing WOB and surface RPM values for a constant mud flow rate and predefined bit wear at total depth, a maximum average ROP for the section can be reached for any PDM.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

Cited by 82 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3