Pore-to-Core EOR Upscaling for CO2 Foam for CCUS

Author:

Rognmo Arthur Uno1,Fredriksen Sunniva Brudvik1,Alcorn Zachary Paul1,Sharma Mohan2,Føyen Tore3,Eide Øyvind1,Graue Arne1,Fernø Martin1

Affiliation:

1. University of Bergen

2. University of Stavanger

3. University of Bergen and SINTEF Industry

Abstract

Summary This paper presents an ongoing CO2–foam upscaling research project that aims to advance CO2–foam technology for accelerating and increasing oil recovery, while reducing operational costs and lessening the carbon footprint left during CO2 enhanced oil recovery (EOR). Laboratory CO2–foam behavior was upscaled to pilot scale in an onshore carbonate reservoir in Texas, USA. Important CO2–foam properties, such as local foam generation, bubble texture, apparent viscosity, and shear–thinning behavior with a nonionic surfactant, were evaluated using pore–to–core upscaling to develop accurate numerical tools for a field–pilot prediction of increased sweep efficiency and CO2 utilization. At pore–scale, high–pressure silicon–wafer micromodels showed in–situ foam generation and stable liquid films over time during no–flow conditions. Intrapore foam bubbles corroborated high apparent foam viscosities measured at core scale. CO2–foam apparent viscosity was measured at different rates (foam–rate scans) and different gas fractions (foam–quality scans) at core scale. The highest mobility reduction (foam apparent viscosity) was observed between 0.60 and 0.70 gas fractions. The maximum foam apparent viscosity was 44.3 (±0.5) mPa·s, 600 times higher than that of pure CO2, compared with the baseline viscosity (reference case, without surfactant), which was 1.7 (±0.6) mPa·s, measured at identical conditions. The CO2–foam showed shear–thinning behavior with approximately 50% reduction in apparent viscosity when the superficial velocity was increased from 1 to 8 ft/D. Strong foam was generated in EOR corefloods at a gas fraction of 0.70, resulting in an apparent viscosity of 39.1 mPa·s. Foam parameters derived from core–scale foam floods were used for numerical upscaling and field–pilot performance assessment.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3