A Pore-Level Study of Dense-Phase CO2 Foam Stability in the Presence of Oil

Author:

Benali BenyamineORCID,Fernø Martin A.,Halsøy Hilde,Alcorn Zachary Paul

Abstract

AbstractThe ability of foam to reduce CO2 mobility in CO2 sequestration and CO2 enhanced oil recovery processes relies on maintaining foam stability in the reservoir. Foams can destabilize in the presence of oil due to mechanisms impacting individual lamellae. Few attempts have been made to measure the stability of CO2 foams in the presence of oil in a realistic pore network at reservoir pressure. Utilizing lab-on-a-chip technology, the pore-level stability of dense-phase CO2 foam in the presence of a miscible and an immiscible oil was investigated. A secondary objective was to determine the impact of increasing surfactant concentration and nanoparticles on foam stability.In the absence of oil, all surfactant-based foaming solutions generated fine-textured and strong foam that was less stable both when increasing surfactant concentrations and when adding nanoparticles. Ostwald ripening was the primary destabilization mechanism both in the absence of oil and in the presence of immiscible oil. Moreover, foam was less stable in the presence of miscible oil, compared to immiscible oil, where the primary destabilization mechanism was lamellae rupture. Overall, direct pore-scale observations of dense-phase CO2 foam in realistic pore network revealed foam destabilization mechanisms at high-pressure conditions.

Funder

Norges Forskningsråd

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3