Turning an Offshore Analog Field into Digital Using Artificial Intelligence

Author:

Espinoza Roberto1,Thatcher Jimmy2,Eldred Morgan2

Affiliation:

1. Dragon Oil

2. Digital Energy

Abstract

Abstract Replacing all analogue sensors in the oil field is very costly and normally only a fraction of them is done. Currently, there is no cost-effective method to efficiently, reliably and accurately capture analogue meter readings in a digital format. Operators are then left with only two options: either replace them with digital (high capex) or continue with manual gathering (high opex). This paper shows how computer vision and artificial intelligence was used for the first time to capture analogue field gauges data with dramatic reduction of cost and increase reliability. This unique solution was implemented in the Cheleken Oil field, Caspian Sea, Turkmenistan. In the offshore platforms, only low-cost cameras were necessary, and gauges were identified using QR codes. During the field trial, operators were only required to take pictures of the gauges at a given interval of time and upload the photos to the application. After an innovative process of calibration, the acquired images were processed using artificial intelligence and deep learning computer vision. Routine manually gathered data was compared with data collected using this solution with the following observations made: Date/time: Operators usually round time. The solution described records time on the captured pictures automatically.Value: Manually gathered data is subject to reading, typing and transcription errors. This solution has no error (provided a good calibration is done).Data Modification: Data gathered automatically with this solution has no human intervention. Therefore, is not subject to alteration, copying or duplication.Data collection with pictures was completed in 1/10th of the time that manual processes take.The business benefits from quicker operator rounds with improved accuracy in meter reading data, and time stamps. The administrative burden for operators of filling in extensive spreadsheets which are prone to error was reduced, this allowed them to collect more meter readings or be reassigned by management to more important scopes of work that bring greater value to the business. Once more it was proved that "a picture is worth a thousand words ". This solution offers an excellent opportunity for digitizing the marginal section of the field and provides a unique way to turn all analogue data into digital with a very low cost of implementation, on an infinitely scalable platform that is vendor agnostic and simple to manage.

Publisher

SPE

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3