Environomics Framework for Sustainable Business Practices: Industrial Case Studies on True Impact Reduction and Process Optimization Through AI

Author:

Suboyin Abhijith1,Eldred Morgan1,Thatcher Jimmy1,Rehman Abdul1,Gee Ivan1,Anjum Hassaan1

Affiliation:

1. Digital Energy

Abstract

Abstract Artificial Intelligence (AI) has significant potential to optimize practices, processes, and energy consumption along with maximizing yield, quality, and uptime. This has substantial impact on putting organizations on the path to net-zero, as such optimizations can reduce greenhouse gas emissions by 20% with minimal capital investments. This comprehensive study presents proven industrial case studies that delivered economically strong strategies coupled with sustainability practice and providing strategic insights to identify, manage and/or attenuate the associated impacts. Environomics presented in this study is a novel framework which deals with unifying economic strategies with sustainability practices (through artificial intelligence) for optimal business performance in terms of finances but also environmental impact. This is achieved through a track, trace, and optimize approach for resources (particularly emissions, energy, water, waste, materials,, and safety) This was achieved through a combination of AI methods such as unsupervised machine learning, multi-variate optimization, and the implementation of similarity measures. A few of the inputs included well data (including production data, drilling data, completion data etc.), logistics/supply chain data (scheduling data, production inventory, mobilization data etc.), safety data (near-miss, observations, hazards, disciplines and insights etc.) with associated costs and emission data. Multiple industrial case studies are presented where sustainability metrics are identified through validated AI models to optimize productivity while reducing emissions and inventory. For instance, well profiling can be used to identify historical parameters that have maximized production potential while optimizing for aspects such as cost or emissions. Furthermore, we can identify the optimal completion parameters for a new well which satisfies carbon targets, use well profiles to build an optimized drilling schedule that meets budget or production criteria while still achieving production targets and optimizing drilling rig routes. Thus, the approach can quickly (within run time) solve interrelated environomic challenges in the reservoir studies space and the field development space. Further case studies indicate that the supply chain can have immense optimization impact on scope 3 aspects with results indicating 30-50% asset utilization improvement with respect to fleets (Vessel, Truck, Rigs). With respect to materials, a 10-20% reduction of material inventory levels all improved through AI. As the workforce are also part of the environment it has been observed that identifying unsafe behaviors within a large operation, also leads to enhanced sustainability behaviors. The models indicate potential of overall emission reduction ranging from 12-20%. This led to the comprehensive framework presented in this study to support sustainable practices that are also economically feasible and deployable. The real-time sustainability metrics generated has immense values in terms of decision-making processes and scenario generation in a fraction of the time that is required using traditional approaches. In addition to assessing the scope of impact, a novel multidisciplinary study and framework is presented to analyze environomic strategies to propose a market-oriented approach through the application of artificial intelligence. Furthermore, industrial, and academic case studies have been evaluated to identify, predict, and optimize the crucial parameters within such workflows that are effective in reducing resources utilized and associated emissions.

Publisher

SPE

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3