Sulfide Stress Cracking of High-Strength Steels In Laboratory and Oilfield Environments

Author:

Kane Russell D.1,Greer J. Brison2

Affiliation:

1. Exxon Production Research Co.

2. Exxon Co. U.S.A.

Abstract

This paper summarizes the results of an examination of the sulfide stress cracking (SSC) susceptibility of selected API and non-API grades of high-strength steels subjected to extensive laboratory and field tests. Introduction High-strength steels commonly used in drilling, completing, and producing' gas and oil wells exhibit catastrophic, brittle failures when exposed to environments containing hydrogen sulfide. This phenomenon is known as sulfide stress cracking (SSC). SSC has long troubled the petroleum industry by placing restrictions on the use of petroleum industry by placing restrictions on the use of high-strength steels in handling sour gas and crude in these applications. As wells become deeper and encounter higher temperature and higher pressure formations, these high-strength steels are needed for effective, economic, and safe completions. High priority is placed on comprehensive design guidelines for commonly used highstrength steels that will allow selection of these materials for specified conditions of temperature and H2S concentration. Many previous studies have used laboratory tests incorporating artificial H2S environments (100 percent H2S, NaCl, HCl, H2SO4, etc.) to investigate the various parameters that affect SSC of steels. Often these studies parameters that affect SSC of steels. Often these studies have failed to relate the laboratory data to observations made in real oilfield environments. Generally, SSC data for many conventional oilfield materials are not available. This paper summarizes the results of an examination of the SSC susceptibility of selected API and nonAPI grades of high-strength steels subjected to extensive laboratory and field tests. The objective of these tests was to determine the limits of SSC susceptibility for these materials in real oilfield environments and to correlate these results with laboratory data. Test Procedure Materials Table 1 lists the materials tested in the present study, along with their chemical compositions. Five API grades of steel tubulars were tested: J-55, C-75, N-80, P-110, and V-150. The non-API steels tested included MOD N-80 (trade mark), SOO-95 (trade mark), SOO-125 (trade mark), and SOO-140 (trade mark). Also included in this examination was a sample of AISI 410 in wrought tubular form. All materials with the exception of the SOO-140 were in the form of 3 1/2- to 4 1/2-in. casing. The SOO-140 was in the form of 7-in. casing. The mechanical properties of these steels are given in Table 2. All materials were heat treated by the supplying manufacturer. Specimens All materials with the exception of the SOO-140 were tested in the form of notched C-rings. An example is shown in Fig. 1. The C-rings were approximately 4 1/2-in. in diameter (3 1/2-in. diameter for SOO-125) with a 0.25-in. wall thickness. The outside surface of each specimen contained a Charpy V-notch, which had a depth of 12 1/2 percent of the specimen thickness. The SOO-140 was tested in the form of notched beam specimens (3.5 X 0.3 X 0.1-in., 12 1/2 percent Charpy V-notch). Such a specimen is also shown in Fig. 1. All specimens were stressed by mechanical deflection using carbon-steel bolts, while neglecting the effect of the C-ring notch. JPT P. 1483

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3