Fracture Impact of Yield Stress and Fracture-Face Damage on Production With a Three-Phase 2D Model

Author:

Barati Reza1,Hutchins Richard D.2,Friedel Torsten2,Ayoub Joseph A.2,Dessinges Marie-Noelle2,England Kevin W.2

Affiliation:

1. University of Kansas

2. Schlumberger

Abstract

Summary The fracture-propagation process performed with polymer-based fracturing fluids is applied commonly to increase the productivity of producing wells, especially in tight gas formations. The fracture-cleanup process is complex and may suffer from the presence of a yield stress, non-Newtonian fluid in place, and both mechanical and hydraulic damage to the matrix near the fracture face. A previously published fast-and-robust single-well model was applied to study the important parameters involved in the fracture-cleanup process. This three-phase 2D model proved useful for assessing the significance of reservoir capillary pressure, broken-gel viscosity, yield stress, formation damage, and fracture conductivity on low-permeability-gas-reservoir production, with studied permeabilities ranging from 0.005 to 5 md. The observed trends may not carry over to nanodarcy reservoirs, such as the gas shales. The three phases included gas, water, and fracturing gel. Introduction Hydraulic fracturing has been used as a successful technology to increase productivity by means of significantly increased contact between the wellbore and the producing formation. To propagate an open fracture into a reservoir, fracturing fluids have been used to provide the two main functions of initiating and propagating the fracture and transporting propping agents along the fracture. Guar gum is the earliest example of an aqueous, viscous fluid used during the injection. The fracturing fluid must be viscous to allow the transport of the proppant during the injection, and it must have the ability to be broken easily after the injection to maintain high conductivity in the fracture during the production phase. To accomplish these tasks, crosslinkers (such as borates and zirconates) and delayed breakers (either oxidizers or enzymes) are added typically to the fluid (Economides and Nolte 2000). Injection of the viscous fracturing fluid results in fluid loss to the matrix and filter-cake formation. Filter cakes with high polymer concentration form on the faces of the fracture during the injection. Original fracturing fluid may remain in the fracture unless the fracture-face filter cake occupies the entire pore space of the propped fracture following closure (Ayoub et al. 2006). Varying exposure times to fracturing fluid (Seright 2002) cause local polymer-concentration changes along the fracture. Thus, breakers are seldom distributed uniformly, and the break of the concentrated fluid is seldom complete. At the end of a fracture treatment, there is normally a shut-in period to allow fracture closure during which fluid continues to leak off into the reservoir. Alternatively, and especially for tight gas reservoirs, the fracture can be forced to close by flowing back some of the fracturing fluid at controlled rates to prevent disturbing the proppant pack significantly. As a result, hydraulic fractures contain partially broken fracturing fluid, and residues remain after the breaker reacts with the polymer. It has been postulated that fracturing fluids need a minimum pressure gradient to begin the cleanup process in the proppant pack (May et al. 1997), and this has been verified experimentally (Ayoub et al. 2006). The fracturing process, depending upon reservoir-matrix permeability, can cause mechanical damage through various mechanisms including fluid invasion into the reservoir, polymer-solids deposition near the fracture face as filter cake forms, clay swelling in the case of incompatible fluids, broken-polymer/fines migration into the reservoir matrix, and chemical interactions between the fracturing fluid and the matrix such as pH alteration or polymer adsorption (Holditch 1979). In addition, hydraulic damage occurs from the increase in water saturation caused by leakoff. The hydraulic damage can include a reduction in gas relative permeability and relative permeability hysteresis in the matrix where fracturing fluid has leaked off as the water saturation is first increased during leakoff and then decreased during the production phase. A shift in the capillary pressure curve to higher values can also result from mechanical damage. The production process becomes even more complicated in tight gas formations with permeability less than 0.1 md when the combined effects of closure stress, non-Darcy flow, high capillary pressure in the matrix, and viscous fingering in the proppant pack cause additional issues and restrict the production rate. The objectives of this study were to develop a basic understanding of the major factors impacting the fracture-cleanup process in tight gas formations with permeability of 0.005 md or greater, including yield stress of the filter cake, capillary pressure changes, and formation damage, by use of available numerical models. A three-phase, 2D model reported in the literature (Friedel 2004) was used for this study.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3