Investigation of Hydraulic Fracturing Sensitivity to Water Injection Volumes In Wolfcamp Formation

Author:

Saeed Yousef Tareq1,Alhajeri Mubarak Muhammad1,Barati Ghahfarokhi Reza2

Affiliation:

1. Public Authority for Applied Education & Training, PAAET

2. University of Kansas, Tertiary Oil Recovery Program, TORP

Abstract

AbstractHydraulic fracturing is a common stimulation technique in oil and gas production to stimulate wells with low permeability. An optimum fracture half-length is designed by injecting the right amount of fracturing fluid to achieve successful results. Otherwise, injecting lower than the optimal amount will cause a poor fracture network, water blockage, and phase trapping of oil and gas behind the fracture space while over injection may result in frac hits and unfavorable economics. This paper presents the importance of the optimum fracture half-length and the role of injection volumes to generate such a length. CMG models were created to study the correlation of different parameters during hydraulic fracturing in the Wolfcamp formation (Permian basin): fracture permeability, water saturation, and capillary pressure. Three CMG models with different fracture half-lengths of 100ft, 200ft, and 350 ft were created. Sensitivity analysis of facture permeability was performed on each model using different values, e.g. 0.1, 1, 10, and 100 md. Representative cases were selected based on the sensitivity analysis results on fracture permeability. Fracture permeability was then changed in each model and was 5 md for the first model, 10 md, and 20 md for the second and third models, respectively. The effect of water saturation was also studied by changing the water saturation from 45% to 55% in an increment of 5% in each simulated model. Finally, the capillary pressure data was added to each model to study the effect of water blockage. Economic analysis was studied to determine the best-case scenario in terms of higher NPVs and RORs. Sensitivity analysis of facture permeability indicated that as fracture permeability increases, then an increase in hydrocarbon production is achieved in which the water saturation was the conclusive parameter. For instance, hydrocarbon production rates were the lowest in the first model which had the lowest fracture half-length and, therefore; fewer water volumes were injected. The second model with a fracture half-length of 200ft as the optimum length provided the optimal amount of injected water and gave the highest amount of incremental Hydrocarbon production, i.e. water saturation and fracture permeability were higher than the previous one. The last model, which has the highest fracture half-length and also the highest amount of injected water showed a significant amount of formation damage. A higher amount of injected fluids caused a high capillary pressure that was responsible for blocking the fractures and caused a decrease in relative permeabilities. The amount of injected water during hydraulic fracturing will significantly affect oil and gas production. CMG models, decline curve analysis, and economic studies showed that designing the optimum amount of injection volumes is key to a successful hydraulic fracturing treatment and minimizing the risk of causing any damage to the formation.

Publisher

SPE

Reference17 articles.

1. 2011. Fracfocus.org: Fracfocus (Reprint). https://fracfocusdata.org/DisclosureSearch/Search.aspx.

2. 2014. Form 8-K. investors. http://investors.pxd.com/static-files/2dae9e6b-3d1f-4282-a822-a502f55e207a.

3. 2019. University Lands: University Lands (Reprint). http://www.utlands.utsystem.edu/WellLibrary/Production.

4. Petroleum Economics;Arps;Analysis of Decline Curves,1945

5. Fracture Impact of Yield Stress and Fracture-Face Damage on Production With a Three-Phase 2D Model;Barati,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3