Improved Data Mining for Production Diagnosis of Gas Wells with Plunger Lift through Dynamic Simulations

Author:

Zhu Jianjun1,Cao Guangqiang2,Tian Wei2,Zhao Qingqi1,Zhu Haiwen1,Song Jie2,Peng Jianlin1,Lin Zimo1,Zhang Hong-Quan1

Affiliation:

1. University of Tulsa

2. PetroChina Company Ltd.

Abstract

Abstract Plunger lift has been widely used in unconventional gas wells to remove liquid accumulation from the well.. Production surveillance provides large amount of data of production process and normal and abnormal operations, which can be used in machine learning (ML) and Artificial Intelligence (AI) to develop algorithms for anomaly diagnosis and operation optimization. However, in the surveillance data the majority is related to daily operation and the data of failure cases are rare. Also the failure cases may not be repeatable and many failure case signatures are not available until they happen. Large data size of anomaly cases are needed to improve the ML model accuracy. Dynamic simulation of the plunger lift process offers an alternative way to generate synthetic data on the specified anomalies to be used to train the ML model. It also helps better understand the trends reflected in the surveillance data and their root causes. From the available surveillance data of gas wells equipped with plunger lift, the simultaneous measurements of different parameters at different points in a production system with normal and abnormal occurrences can be analyzed and the correspondent trends/signatures can be identified. The typical signatures that conform to pre-determined anomalous patterns can be obtained. Using a commercial transient multiphase flow simulator, the actual field data of tubing/casing pressures can be matched through a tuning process. Trial-and-error is needed to improve the dynamic plunger lift model so that a good agreement with the production data can be achieved by adjusting the reservoir performance, plunger parameters or surface pipeline boundary conditions. Following the validation under different flow conditions, synthetic datasets for various operational and flow conditions can be generated by performing parametric studies. Unlike the field data, the synthetic data from the dynamic simulations mainly comprise anomaly signatures (e.g. tubing rupture, missed arrival of plunger, etc.), which can be added to the ML data pool to reduce the data covariance and increase independency.

Publisher

SPE

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3