Affiliation:
1. Magnolia Petroleum Co.
2. Iraq Petroleum Co. Ltd.
Abstract
Published in Petroleum Transactions, AIME, Volume 213, 1958, pages 17–19.
Introduction
The first step in a quantitative analysis of the mechanism of oil displacement by water in a fractured reservoir is usually conceded to be the solution of the differential equation describing the saturation distribution of two immiscible fluids flowing in a porous medium, where the capillary pressure is taken into account. In such a system the production mechanism may consist of displacement of oil both by the flow of water due to natural or artificially imposed pressure gradients and by imbibition, which implies a flow of water not due to external pressure gradients. Owing to the presence of the two oil displacement mechanisms, the mathematical model given by the differential equation intended to describe the system may not properly represent the behavior of the physical system. In fact, in the reservoir the rate of water advance may be very slow, and in the case of a fractured reservoir with a great number of large fractures, the pressure difference determining the flow of water through the matrix may be much less than 1 lb/psi over lengths of a few feet. In such a case, imbibition (the exchange between oil in the matrix and water in the fractures resulting from capillary forces) may become, with time, a significant element of the production mechanism.
It occurred to the authors, however, that without going into a physical analysis of the process of production, it might be possible by means of simple abstract reasoning to throw some light on the variation of recovery with time under conditions occurring in a highly fractured oil reservoir with rising water table.
The object of this paper is to present both the reasoning and its application to a reservoir of the highly fractured type. Specifically, the analysis given here was undertaken to try to explain the increase of recovery (as defined later) with time as observed in this reservoir, without having to assume unlikely variations in the reservoir parameters with depth. This attempt has been successful as will become clear upon comparison of the computed recoveries with the actual field data.
Publisher
Society of Petroleum Engineers (SPE)
Cited by
123 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献