Two-dimensional counter-current capillary imbibition of a wetting phase into a partially submerged porous cylindrical matrix block

Author:

Dejam Morteza1ORCID,Hassanzadeh Hassan2ORCID

Affiliation:

1. Department of Energy and Petroleum Engineering, College of Engineering and Physical Sciences, University of Wyoming 1 , 1000 E. University Avenue, Laramie, Wyoming 82071-2000, USA

2. Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary 2 , 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada

Abstract

The purpose of this study is to address the two-dimensional counter-current capillary dominant imbibition of a wetting phase into a water-wet porous cylindrical matrix block partially submerged in the wetting phase. A two-dimensional unsteady-state diffusion equation is used to model the process. The governing equation is solved using a combination of the Laplace and the finite Fourier sine transforms to find and analyze the solutions for the normalized water saturation and the volume of the imbibed wetting phase. The results reveal that the volume of the imbibed wetting phase and the capillary diffusion shape factor for a partially submerged matrix block are significantly lower compared to those of a fully submerged matrix block, highlighting the overestimation of imbibed volume using available models based on full immersion in the wetting phase. It has been observed that the volume of the imbibed wetting phase increases over time until reaching a state of equilibrium. In the case of a partially submerged matrix block, the shape factor is inversely proportional to the square root of time (σ ∼ 1/t) during the early time and decreases sharply as the imbibed wetting phase reaches an equilibrium. In the case of a fully submerged matrix block, the shape factor is inversely proportional to the square root of time (σ ∼ 1/t) during the early time and later reaches a pseudo-steady-state value. The proposed model, along with the findings obtained, advances our understanding of capillary imbibition in porous media.

Funder

University of Wyoming

University of Calgary

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3