A Semianalytical Model for Evaluating the Performance of a Refractured Vertical Well With an Orthogonal Refracture

Author:

Teng Bailu1,Andy Li Huazhou1

Affiliation:

1. University of Alberta

Abstract

Summary Production from a fractured vertical well will lead to a redistribution of the stress field in formations. If the induced stress changes are sufficiently large to overcome the effect of the initial horizontal-stress deviator, the direction of the minimum horizontal stress can be turned into the direction of the maximum horizontal stress within an elliptical region around the initial fracture, resulting in a stress-reversal region near the wellbore. In such cases, a refracturing treatment can create a refracture that propagates orthogonally to the initial fracture because of the stress reversal. As such, the high-pressure area of the formation can be stimulated by the refracture, and the productivity of the refractured well can be improved. In this work, we develop a semianalytical model to evaluate the performance of a refractured vertical well with an orthogonal refracture. To simulate the well performance throughout the entire production period, we divide the well production into three stages: the first stage, when the well is producing oil with the initial fracture; the second stage, when the well is shut down for the refracturing treatment; and the third stage, when the well is producing oil with both the initial fracture and the refracture. In addition, by discretizing the initial fracture and the refracture into small segments, the conductivity of the fractures can be taken into account, and the geometry of the fracture system can be captured. We use the Green-function method to analytically simulate the reservoir flow and use the finite-difference method to numerically simulate the fracture flow; therefore, a semianalytical model can be constructed by coupling the reservoir-flow equations with the fracture-flow equations. This proposed model is applied to different wellbore and reservoir conditions. The calculated results show that this proposed model is versatile because it can simulate various wellbore constraints, including the conditions of constant bottomhole pressure (BHP), varying BHP, constant production rate, and varying production rate. The permeability anisotropy of the reservoir system, as well as the nonuniform conductivity distribution along the fracture, can also be incorporated into this proposed model. In addition, we demonstrate that this proposed model can be used to simulate other types of refractured vertical wells with minor modifications.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3