Proppant Flowback: Can We Mitigate the Risk?

Author:

Chuprakov Dimitry1,Belyakova Ludmila1,Iuldasheva Aliia1,Alekseev Alexey1,Syresin Denis1,Chertov Maxim1,Spesivtsev Pavel1,Salazar Suarez Franck Ivan1,Velikanov Ivan1,Semin Leonid1,Bannikov Denis1

Affiliation:

1. Schlumberger

Abstract

Abstract We propose a new model and workflow to predict, quantify and mitigate undesired flowback of proppant from created hydraulic fractures. We demonstrate several field cases in which we predict significant proppant flowback and propose options for mitigation. Mitigation of proppant flowback is based on case- specific changes in the fracturing treatment design and modifications in the well startup schedule that preserve near-wellbore conductivity. The presented workflow integrates four key components of proppant flowback study: (A) simulation of the fracturing job with a high-resolution model of proppant placement inside a fracture; (B) subsequent simulation of flowback from the created fractures equipped by a validated proppant flowback model; (C) a series of laboratory experiments, which quantify the proppant flowback for a wide range of commercial proppants; and (D) an accurate mathematical model, which is validated by the results of laboratory experiments and integrated into a flowback simulator to predict the behavior of injected proppant. Each component is presented with sufficient details to demonstrate its necessity for accurate modeling of a coupled solid-and-fluid flow inside a fracture. The presented theory of proppant pack mobilization is based on the concept of a proppant pack erosion process evolving from free boundaries of proppant packs. The theory confirms that proppant flowback critically depends on flow rate, proppant, fracture, and reservoir parameters. Laboratory experiments on proppant flowback in a cell support these theoretical predictions. The theoretical model of proppant flowback is integrated into the numerical simulator of early-time production from a fractured reservoir and predicts flowback of both injected solids and fluids from a fracture. We show that the combination of the proppant flowback model, laboratory experiments, hydraulic fracturing design tool, and early-time production simulator result in a useful workflow for prediction and mitigation of issues with proppant flowback and production decline. The entire workflow was validated using field cases where proppant flowback was observed. Modeled amounts of flowed back proppant are in good agreement with amounts of proppant observed in the field. Hydraulic fracturing design optimization was performed to minimize or eliminate proppant flowback. The novelty of the proposed study is related to the model of proppant flowback, which accounts for erosion of the proppant pack and is calibrated against unique laboratory experiments. The presented model and proppant flowback mitigation workflow can assist in understanding and mitigating proppant flowback events that can occur during wide range of oilfield operations.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3