Evaluating the Effects of Proppant Flowback on Fracture Conductivity in Tight Reservoirs: A Combined Analytical Modeling and Simulation Study

Author:

Cheng Yishan12,Li Zhiping12,Fu Yingkun12ORCID,Xu Longfei12

Affiliation:

1. School of Energy Resources, China University of Geosciences (Beijing), Beijing 100083, China

2. Beijing Key Laboratory of Unconventional Natural Gas Geological Evaluation and Development Engineering, Beijing 100083, China

Abstract

This work establishes an analytical model for determining the critical velocity for proppant flowback, and evaluates how proppant flowback affects fracture conductivity for tight reservoirs. The multiphase effects are considered for determining the critical velocity for proppant flowback before and after fracture closure, respectively. The model’s performance is demonstrated by comparing the results against previous models. A finite-element model is built to simulate the proppant flowback process for a hydraulic-fractured well completed in the Ordos Basin. The change in fracture conductivity caused by proppant flowback for several scenarios with varying saturation and net pressure in fractures is further quantitatively assessed. Our results highlight the importance of multiphase effects in determining the critical velocity for proppant flowback at relatively low water saturation in fractures. The critical velocity generally increases with increasing water saturation in fractures and net pressure in fractures. At a flowback velocity higher than the critical value, the loss in fracture conductivity becomes relatively more pronounced at a lower water saturation in fractures and a lower net pressure in fractures. The findings of this work are expected to provide insights into the mechanisms of proppant flowback and flowback drawdown management for field operations in tight reservoirs.

Funder

Joint Fund of National Natural Science Foundation of China

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3