Application of Artificial Intelligent Systems in ROP Optimization: A Case Study in Shadegan Oil Field

Author:

Bataee M..1,Mohseni S..1

Affiliation:

1. Department of Petroleum Engineering, Ahwaz Faculty of Petroleum Engineering, Petroleum University of Technology, Abadan, Iran

Abstract

Abstract According to the field data, there are several methods to reduce the drilling cost of other wells. One of these methods is the optimization of drilling parameters to obtain the maximum available ROP. Considering the geology and rock mechanic parameters, each part of well has different recommended parameters. There are too many parameters affecting in rate of penetration like hole cleaning (including drillstring rotation speed, mud rheology, weight on bit and floundering phenomena), tooth wear, formation hardness (including depth and kind of formation), differential pressure (including mud weight) and etc. Therefore, developing a logical relationship among them to assist in proper ROP selection is extremely necessary and complicated though. In such a case, Artificial Neural Networks (ANNs) is proven to be helpful in recognizing complex connection between these variables. Genetic Algorithm (GA), as a class of optimizing methods for the complex functions, is applied to help ROP optimization and its related drilling parameters. Optimization program will optimize drilling parameters which will be used in future works and also leads us to proper time estimation. The present study is predicting the proper penetration rate, optimizing the drilling parameters, estimating the drilling time of well and eventually reducing the drilling cost for future wells.

Publisher

SPE

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3