Author:
Al-Assad Ebrahim A.,Hamd-Allah Sameera M.
Abstract
Abstract
Achieving an accurate and optimal rate of penetration (ROP) is critical for a cost-effective and safe drilling operation. While different techniques have been used to achieve this goal, each approach has limitations, prompting researchers to seek solutions. This study’s objective is to conduct the strategy of combining the Bourgoyne and Young (BYM) ROP equations with Bagging Tree regression in a southern Iraqi field. Although BYM equations are commonly used and widespread to estimate drilling rates, they need more specific drilling parameters to capture different ROP complexities. The Bagging Tree algorithm, a random forest variant, addresses these limitations by blending domain knowledge and capturing non-linear relationships. Its ensemble nature also mitigates the impact of outliers. This approach combines physics-based equations with machine learning to enable more accurate ROP predictions in drilling operations. It enhances drilling efficiency, reduces expenses, and improves decision-making in the oil and gas sector. Extensive testing on actual drilling datasets has demonstrated outstanding performance compared to the multiple linear regression (MLR) method. With the increased R2 and zero P-value. positive findings show that this tool can benefit precise future ROP prediction in southern Iraqi oil well drilling.