Abstract
Summary
There is now an array of analytical, semianalytical, and empirical forecasting methods that can be used to history match and forecast multifractured horizontal wells (MFHWs) completed in low-permeability (tight) reservoirs. Recent developments in analytical modelling have extended model application to cases in which the fracture geometry associated with MFHWs is complex. However, analytical modelling is still primarily limited to single-phase-flow problems, which is very restrictive, and potentially inaccurate, for tight oil and liquid-rich gas reservoirs flowing at less than saturation pressure.
In this work, a semianalytical method is presented for history matching and forecasting MFHWs with simple and complex fracture geometry completed in tight, black-oil reservoirs and flowing at less than the bubblepoint pressure. The linear-to-boundary (LTB) model, commonly used to model flow in the inner (stimulated) region of an MFHW, is altered to account for two-phase flow of oil and gas. The enhanced-fracture-region (EFR) case, in which both stimulated and nonstimulated regions contribute to flow, is approximated (empirically) by superposition of two modified LTB models (one representing the inner fractured region and the other the outer, nonstimulated region), and similarly altered to account for two-phase flow. An important observation is that, for MFHWs flowing at less than bubblepoint at constant flowing bottomhole pressure during transient linear flow, the slope of the square-root-of-time plot for both oil and gas phases is constant [i.e., gas/oil ratio (GOR) is constant]. The slope and intercept of the square-root-of-time plot for the primary phase (e.g., oil in the cases studied) can therefore be used to generate a forecast during the transient linear-flow period for oil and for gas (by assuming constant GOR). For boundary-dominated flow, a robust method for forecasting gas and oil was developed using material balance for both phases combined with a modified productivity-index equation that accounts for multiphase flow. A fully implicit approach has been used to solve the flow equations for oil and gas.
The new modified LTB and EFR models simplify forecasting considerably for low-permeability black-oil reservoirs exhibiting multiphase flow behaviour, relative to numerical simulation, although they are not as rigorous. The new models can, however, be tied directly to the results of rate-transient analysis and are flexible enough to be applied to common conceptual models used in the literature for forecasting MFHWs under certain conditions.
The new modified LTB model has been compared with both simulated and field examples. The initial results demonstrate that transient- and boundary-dominated-flow periods for oil and gas are reasonably matched with the new approach, although slight mismatches may occur, particularly during early boundary-dominated flow. The limits of the new forecasting method will continue to be explored in future work.
Publisher
Society of Petroleum Engineers (SPE)
Subject
Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering