Rate Transient Analysis for Multi-Fractured Wells in Tight Gas Reservoirs Considering Multiple Nonlinear Flow Mechanisms

Author:

Wu Yonghui123ORCID,Mi Lidong12,Ma Liqiang34ORCID,Zheng Rongchen12,Feng Xiujuan3ORCID

Affiliation:

1. State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Sinopec, Beijing 100083, China

2. Key Laboratory of Marine Oil & Gas Reservoirs Production, Sinopec, Beijing 100083, China

3. School of Mines, China University of Mining and Technology, Xuzhou 221116, China

4. Key Laboratory of Xinjiang Coal Resources Green Mining (Xinjiang Institute of Engineering), Ministry of Education, Urumqi 830023, China

Abstract

Making rate transient analysis (RTA) and formation evaluation for multi-fractured tight gas wells has always been a difficult problem. This is because the fluid flow in the formation has multiple nonlinear flow mechanisms, including gas-water two-phase flow, gas slippage, low-velocity non-Darcy flow, and stress-dependent permeability. In this paper, a novel RTA method is proposed for multi-fractured wells in tight gas reservoirs incorporating nonlinear flow mechanisms. The RTA method is based on an analytical model, which is modified from the classical trilinear flow model by considering all the nonlinear flow mechanisms. The concept of material balance time and normalized rate is used to process the production data for both water and gas phases. The techniques of approximate solutions in linear/bilinear flow regimes and type curve fitting are combined in the proposed RTA method. After that, the rate transient behaviors and influencing factors of multi-fractured tight gas wells are analyzed. A field case from Northwestern China is used to test the efficiency and practicability of the proposed RTA method. The results show that six flow regimes for both gas and water production performances are exhibited on the log-log plots of normalized production rate against material balance time. The rate transient responses are sensitive to the nonlinear flow mechanisms, and formation and fracture properties. The medium flow regimes are significantly affected by fracture number, fracture conductivity, fracture half-length, stress-dependent permeability, gas-water two-phase flow, and formation permeability, which should be considered in making RTA of fractured tight gas wells. The field case shows that both gas and water production performances can be well-fitted using the proposed RTA method. The major innovation of this paper is that a novel RTA method is proposed for fractured tight gas wells considering multiple nonlinear flow mechanisms, and it can be used to make reasonable formation and fracturing evaluations in the field.

Funder

Jiangsu Province Carbon Peak Carbon Neutral Technology Innovation Project in China

National Key R&D Program of China

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3