New Technology Improves Performance of Viscoelastic Surfactant Fluids

Author:

Crews James B.1,Huang Tianping1,Wood W. Russell1

Affiliation:

1. Baker Oil Tools

Abstract

Summary For a number of years, viscoelastic surfactant (VES) fluids have been used for a variety of stimulation treatment applications, including hydraulic fracturing, acid diverting, and gravelpacking. VES fluid systems typically offer higher-retained permeability and conductivity of the formation sand and proppant pack than polymeric systems. However, preliminary cost, a 200°F temperature limit, excessive leakoff, and no internal breaker mechanism for dry gas applications have limited VES use. New VES fluid technology has been developed that substantially improves product performance and cost effectiveness. The temperature range has been extended to 300°F by using newly developed VES stabilizer technology. The system works with high-density brines up to 14.4 ppg. Internal breakers have been developed that permit a controlled viscosity break from ambient to 300°F. Laboratory tests have determined that an internally broken fluid rapidly achieves >90% returned permeability and conductivity of the formation sand and proppant pack without the presence or need for contacting hydrocarbons. Fluid loss-control technology has been developed that reduces VES fluid leakoff similar to wall-building fluids, but without filtercake damage. This paper discusses the development of the new VES system chemistry and its properties. The paper also addresses the merits of a viscous fluid that can work in a variety of base fluids for high-pressure applications, such as managing surface-treating pressure or for gas-hydrate inhibition in deep gas or deepwater environments. Breaker technology discussion addresses the ability to ensure and enhance VES fluid-viscosity breaking. Fluid loss-control technology effective to at least 2,000 millidarcies (mD) is presented. This paper also presents rheological, return permeability and conductivity, fluid loss control, treating pressure, and financial results.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Mechanical Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3