Development of CO2-Sensitive Viscoelastic Fracturing Fluid for Low Permeability Reservoirs: A Review

Author:

Bakhsh Allah,Zhang LiangORCID,Wei Huchao,Shaikh Azizullah,Khan Nasir,Khan Zeeshan,Shaoran Ren

Abstract

There are economic and technical challenges to overcome when increasing resource recovery from low permeability reservoirs. For such reservoirs, the hydraulic fracturing plan with the development of clean and less expensive fracturing fluid plays a vital aspect in meeting the energy supply chain. Numerous recent published studies have indicated that research on worm-like micelles (WLMs) based on viscoelastic surfactant (VES) fluid has progressed substantially. This study looks at the development of CO2-sensitive viscoelastic fracturing fluid (CO2-SVFF), its applications, benefits, limitations, and drawbacks of conventional fracturing fluids. The switchable viscoelasticity of CO2-SVFF system signifies how reusing of this fluid is attained. Compared to conventional surfactants, the CO2-SVFF system can be switched to high viscosity (to fracture formation and transporting proppants) and low viscosity (easy removal after causing fracture). The effect of pH, conductivity, temperature, and rheological behaviors of CO2-SVFFs are also highlighted. Further, the aid of Gemini surfactants and nanoparticles (NPs) with low concentrations in CO2-SVFF can improve viscoelasticity and extended stability to withstand high shear rates and temperatures during the fracturing process. These studies provide insight into future knowledge that might lead to a more environmentally friendly and successful CO2-SVFFs in low-permeability reservoirs. Despite the increased application of CO2-SVFFs, there are still several challenges (i.e., formation with high-temperature range, pressure, and salinity).

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3