Mechanistic Modeling of MEOR as a Sustainable Recovery Technology: Coreflooding Validation, Sensitivity and Field Application

Author:

O. Ansah Eric1

Affiliation:

1. Kyushu University

Abstract

Abstract Globally, most oil fields are on the decline and further production from these fields is addressed to be practical in cost-effectiveness and oil productivity. Most oil companies are adopting two main technologies to address this: artificial intelligence and enhanced oil recovery (EOR). But the cost of some of these EOR methodologies and their subsequent environmental impact is daunting. Herein, the environmental and economic advantage of microbial enhanced oil recovery (MEOR) makes it the point of interest. Since, there is no need to change much-invested technology and infrastructure, amidst complex geology during MEOR application, it is entrusted that MEOR would be the go-to technology for the sustainability of mature fields. Despite the benefits of MEOR, the absence of a practical numerical simulator for MEOR halts its economic validation and field applicability. Hence, we address this by performing both core and field- scale simulations of MEOR comparing conventional waterflooding. The field scale is a sector model(fluvial sandstone reservoir with 13,440 active grid cells) of a field in Asia - Pacific. Here we show that pre-flush inorganic ions (Na+ and Ca2+) affect the mineralization of secondary minerals which influences microbe growth. This further influences carboxylation, which is relevant for oil biodegradation. Also, as per the sensitivity analysis: capillary number, residual oil saturation and relative permeability mainly affect MEOR. Secondary oil recovery assessment showed an incremental 6% OOIP for MEOR comparing conventional water flooding. Also, tertiary MEOR application increased the oil recovery by about 4% OOIP over conventional water flooding. It was established that during tertiary recovery, initiating MEOR after 5years of conventional waterflooding is more advantageous contrasting 10 and 15years. Lastly, per probabilistic estimation, MEOR could sustain already water-flooded wells for a set period, say, a 20% frequency of increasing oil recovery by above 20% for 2 additional years as highlighted in this study.

Publisher

SPE

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3