Evaluating the Impact of Biochemical Reactions on H2 Storage in Depleted Gas Fields

Author:

Maniglio Marco1,Rivolta Giacomo1,Elgendy Ahmed1,Panfili Paola1,Cominelli Alberto1

Affiliation:

1. Eni NR

Abstract

Abstract Underground Hydrogen Storage (UHS) is an emerging technology to store energy, produced by renewable sources, into subsurface porous formations. UHS efficiency in depleted gas reservoirs can be affected by H2 biochemical degradation due to interactions with rock, brine and gas. In the reservoir, subsurface microorganisms can metabolize H2 with possible hydrogen losses, H2S production, clogging and formation damage. In this work we investigate the impact of hydrogen losses due to microbial activities on UHS operations in depleted gas reservoirs lying in sandstone formations. We developed a workflow to exploit the chemical reactive transport functionalities of a commercial reservoir simulator, to model biochemical processes occurring in UHS. Kinetic chemical reaction formulation was used to replicate a Monod's type microorganism growth, using PHREEQC to tune reaction parameters by matching a 0-D process in an ideal reactor. Then, we applied the methodology to evaluate the impact of biotic reactions on UHS operations in depleted gas fields. Eventually, various sensitivities were carried out considering injection/production cycles lengths, cushion gas volumes and microbial model parameters. Benchmark against PHREEQC demonstrated that, by properly tuning the kinetic reaction model coefficients, we are capable of adequately reproduce Monod-like growth and competition of different microbial community species. Field-scale results showed that hydrogen losses due to biochemistry are limited, even though this may depend on the availability of reactants in the specific environment: in this work we focus on gas reservoirs where the molar fraction of the key nutrient, CO2, is small (< 2%) and the formation is a typical sandstone. Operational parameters, e.g. storage cycle length, have an impact on the biochemical dynamics and, then, on the hydrogen degradation and generation of undesired by-products. Similar considerations hold for the model microbial growth kinetic parameters: in this study they were established using available literature data for calibration, but we envisage to tune them using experimental results on specific reservoirs. The current model set-up does not account for rock-fluid geochemical interactions, which may result in mineral precipitation/dissolution affecting the concentration of substrates available for biotic reactions. Nonetheless, it can provide an estimate of hydrogen consumption during storage in depleted gas reservoirs due to microbial activities. This study is among the first attempts to evaluate the impact of hydrogen losses by the presence of in situ microbial populations during hydrogen storage in a realistic depleted gas field. The assessment was performed by implementing a novel workflow to encapsulate biochemical reactions and bacterial dynamic-growth in commercial reservoir simulators, which may be applied to estimate the efficiency and associated risks of future UHS projects.

Publisher

SPE

Reference53 articles.

1. Seasonal storage of hydrogen in a depleted natural gas reservoir;Amid;International journal of hydrogen energy,2016

2. Methanogenic bacteria as a key factor involved in changes of town gas stored in an underground reservoir;Amigávn;FEMS Microbiology Ecology,1990

3. Estimation of diffusion losses of hydrogen during the creation of its effective storage in an aquifer;Anikeev,2021

4. Mechanistic modeling of meor as a sustainable recovery technology: Coreflooding validation, sensitivity and field application;Ansah,2019

5. Integrated microbial enhanced oil recovery (meor) simulation: Main influencing parameters and uncertainty assessment;Ansah;Journal of Petroleum Science and Engineering,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3