A Correlation of the Viscosity of Hydrocarbon Systems With Pressure, Temperature and Composition

Author:

Little J.E.1,Kennedy H.T.2

Affiliation:

1. Shell Development Co.

2. Texas A And M U.

Abstract

Abstract An empirical equation for the prediction of the viscosity of several pure paraffin hydrocarbons and nitrogen is presented. It involves temperature, pressure and six constants of the material, and it applies reliably to both liquids and gases. The equation is similar in form to van der Waal's equation of state. For the paraffin hydrocarbons methane through n-hexane and nitrogen, an average absolute deviation of 1.9 percent was obtained on 1,006 data points described in the literature by 14 authors. When this equation is extended to complex, liquid hydrocarbon mixtures, a correlation was obtained with an average absolute deviation of 9.9 percent. Introduction Equations describing the flow of gas and liquid through porous media contain the viscosity coefficient of the fluid. If other pertinent variables remain constant, the volume rate of flow is inversely proportional to this coefficient. In dealing with condensate fluids and volatile oils, however, the compositional effects resulting from changing pressure materially affect the viscosity. The effect of compositional changes also may be significant in certain secondary recovery or pressure maintenance processes, notably miscible displacement or gas injection. Early attempts to describe the performance of reservoirs utilized a volumetric material balance method wherein gas and liquid in the reservoir were identified as produced gas and liquid at the surface. This method of analysis proved adequate for reservoirs at moderate temperature and pressure that contained gas with moderately low amounts of condensable materials. The volumetric material balance procedures for "black oil" reservoirs leave much to be desired when applied to condensate and volatile oil reservoirs because phase behavior and compositional changes the relatively more important in these cases. The alternative is a compositional material balance, which in turn, requires a correlation of properties of the reservoir fluid with composition. This paper supplies this correlation in regard to viscosity, for reservoir crude oils. REVIEW OF LITERATURE The literature contains many empirical equations describing the effects of composition, temperature and pressure on the viscosities of pure liquids and binary liquid mixtures. However, the applicability of a majority of these equations is limited to very low pressures and to a small number of systems. Most of the, when applied to complex hydrocarbon systems, are of little value. The lack of utility of the majority of equations results from the fact that they were developed to show the separate effect of temperature, pressure or composition on viscosity, but not to predict the viscosity as a function of all three variables. And with the few exceptions noted below, they were developed to apply to much simpler systems than hydrocarbon mixtures. P. 157ˆ

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3